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SECTION I
INTRODUCTION

1.1 BACKGROUND

For more than two decades it has been well known that propaga-

tion through the natural ionosphere can cause degradation of satellite
signals (Yeh and Swenson, 1959; Skinner, et al., 1971; Pope and Fritz,
1971; Taur, 1976; Whitney and Basu, 1977; Johnson and Lee, 1978; Mullen,

et al., 1978; Paulson and Hopkins, 1978; Fremouw, et al., 1978). It has
also been widely reported for a similar period of time that the ionosphere
is subject to even greater disturbances following high altitude nuclear

explosions (Matsushita, 1959; Keyes and Tinsley, 1962; Rothwell, et al.,
1963; Maeda, et al., 1964; Arendt and Soicher, 1964; Zinn, et al., 1966;
Boquist and Snyder, 1967; Hoerlin, 1976; Glasstone and Dolan, 1977; King

and Fleming, 1980). In both natural and artificially disturbed iono-
spheres, electron density irregularities can cause random variations in

the amplitude and phase of a propagating wave. Such signal variations are
called scintillation or fading and have been observed on satellite links
through the natural ionosphere at frequencies up to the GHz range (Taur,
1976; Fremouw, et al. 1978).

If all frequency components of the received scintillating signal

vary essentially identically with time, the oropagation channel is re-
ferred to as nonselective or as a flat fading channel. When the scintil-
lations exhibit statistical decorrelation at different frequencies within
the signal bandwidth, the channel is referred to as frequency selective.

Frequency selective scintillations are therefore encountered

when the bandwidth utilized by a communication link exceeds the coherence
bandwidth of the ionospheric channel. This situation is more likely to

occur when the system bandwidth is large, as in spread spectrum systems.
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Such systems typically emoloy either direct sequence spectrum spreading
over a large instantaneous bandwidth, or carrier frequency hopping of a
small instantaneous signal spectrum over a large bandwidth. The effects
of frequency selective scintillation are quite different for direct

sequeice and frequency hopped systems (Bogusch, et al., 1981). Only the
case of an instantaneous wide bandwidth signal is considered in this work
although the appropriate results presented here may easily be applied to
the latter case.

Frequency selective scintillation is much more likely to occur

if the ionosphere is more highly disturbed, as for example by nuclear
explosions or by chemical releases (Knepp and Bogusch, 1979). Increased
electron concentrations and irregular structure of the ionization can lead
to intense signal scintillations and potentially significant frequency

selective effects at frequencies as high as the 7-8 GHz SHF band (Knepp,
1977). Consequently, the effects of frequency selective propagation dis-
turbances are of importance to spread spec~rum satellite systems that may
have to operate in highly disturbed environments.

In this report, several techniques are presented to determine

the effects of ionization irregularities on a propagating wide bandwidth
signal subject to frequency selective scintillation.

1.2 MPS PROPAGATION SIMULATION

The multiple phase-screen (MPS) propagation simulation (Knepp,

1977; Wittwer, 1978) is the most general technique to obtain a solution t3
the parabolic wave equation. In this solution technique, the ionized
medium is divided into a finite number of layers. The field fluctuation

through each layer is calculated by replacing the layer by a phase-
changing screen located at its center, whose statistical properties are
determined from the statistics oF the electron density fluctuations within
Lhe layer. At each phase-screen, the statistical phase is added to the

electric field phase and the wave is then propagated to the next phase-
-screen or to the observer. For wide bandwidth waveforms, the numerical

solution is obtained at a number of discrete frequencies centered about a
carrier frequency and then a time-domain solution is obtained by the use

of Fourier transform techniques.
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The MPS propagation technique is quite general, and may be
easily applied to problems involving numerous, separated, layers of ioni-

zation characterized by spatially varying electron density power spectra.
Section 2 of this report describes the MPS numerical propagation simula-
tion and its application to wide bandwidth signal generation.

The MPS propagation simulation can handle all levels of iono-
spheric disturbances from the least severe, where only minor phase fluc-
tuations occur, to the most severe cases of frequency selective Rayleigh
fading. Since the MPS simulation provides a direct solution to the
parabolic wave equation, the results are exact given a certain description
of the'iropagation environment. Thus the applicability of the MPS propa-
gation simulation depends upon the accuracy of the description of the
scattering medium. In most of the MPS results presented in this report,
the propagation environment is described by a one-dimensional K-3

power-law phdse power spectrum. This spectrum corresponds to a K
three-dimensional power spectrum for electron density fluctuations and is
representative of many in-situ measurements (Dyson, et al, 1974; Phelps

and Sagalyn, 1976) as well as numerical simulation of striation spectra
(Scannapieco, et al., 1976).

Section 2 of this report describes the MPS propagation simula-
tion in detail as it is applied to calculate realizations of received
time-domain signals.

The word "realization" is used in this report to refer to a

specific sample of a statistical process. For example, realizations of
the phase-changing screen are generated in a random manner based upon a

sequence of pseudo-random numbers generated numerically. However, once
these "random" numbers are generated, the phase-screen is completely

defined and known. Similarly, the wave field propagated through this
phase-screen is subject to exact calculation. However, a different
sequence of pseudo-random numbers will yield a different phase-screen
realization and hence a different realization of the received electric
field.

17



An important fur:ction of the WVS propagation simulation is to

serve as an intermediate step in the analysis of the effects on receivers
of a disturbed, ionized propagation environment. Thus realizations of the
received signal amplitude and phase are important results of the simula-
tion and in turn serve as direct input to detailed receiver simulations
(Bogusch, at al., 1981; Knepp and Bogusch, 1979).

In Section 2 the MPS propagation simulation is applied to pre-

dict the effect of a large, striated bari um cloud on a wide bandwidth
signal passing through the disturbed ionization. These predictions are

based on an analysis of several earlier barium releases (Prettie ard
Marshall, 1978) from which a model of barium cloud irregularity structure

was obtained. The barium cloud is then represented as a single phase-
screen in the MPS simulation. A large Gaussian phase lens is used to
model the mean or deterministic ionization effects from the barium cloud
and small level stochastic phase perturbations are added to represent the
ionization fluctuations. This model is quite general and has been applied
to describe several other observed barium clouds (Knepp and Bogusch,

1979). Results for the received wide bandwidth signal after propagation
through the barimn cloud are presented and analyzed. Scattering from

various components of the bariun cloud is considered independently and
then in combination to give a useful and intuitive understanding of the

elements of the scattering process that are important for wide bandwidth
signals.

The Defense Nuclear Agency barium release experiment discussed

above took place in December 1980 and the results for the wide bandwidth
propagation experiment were provided by Dr. James Marshall (Marshall,

1982). The agreement between the 1979 predictions and the 1980 experiment
is quite remarkable and is discussed in Section 2.

Major emphasis in Section 2 is also given to a comparison of the

MPS results to theoretical results. As stated earlier, the MPS propaga-
tion simulation is the only effective method to provide signal realiza-

tions applicable to a wide range of propagation conditions. For compari-
son purposes, these signal realizations may be analyzed to obtain average
quantities for which analytic solutions or approximations can be found.

18



f
MPS results for the two-position, two-frequency mutual coherence

function r(Ax,Aw) are compared to a theoretical, strong scatter approxima-
tion developed in Section 4. Although the theoretical calculation is more
restrictive than the MPS propagation technique, good agreement between

numerical and theoretical results is shown. As an additional comparison,
the time domain MPS results for the mean time delay and time delay jitter

of a wide bandwidth PN spread spectrum signal are compared to theoretical
moment method calculations (Yeh and Liu, 1977).

1.3 STATISTICAL SIGNAL GENERATION

In Section 3 a second analytical/numerical technique is describ-
ed to generate realizations of the received signal after propagation of a
wide bandwidth waveform through a layer of strongly turbulent media.
These statistical signal realizations are generated to have Rayleigh amp-
litude statistics (Fante, 1975) and to have spatial and frequency correla-
tion properties which obey the parabolic wave equation in the strong scat-

ter limit. Although these statistical signal realizations apply only to
the case of strong scattering, their generation requires only a fraction
of the computer resources required for signal generation by wide bandwidth
multiple phase-screen calculations. Furthermore, the limitation to the
strong scatter regime is not of great significance since frequency selec-
tive scintillation only occurs during strong scattering conditions.

This statistical technique follows the basic formalism described

in Wittwer (1980) and is based upon the solution for the two-frequency
mutual coherence function, r, for spherical wave propagation with trans-

mitter and receiver located on opposite sides of a thick finite layer of
ionized electron density irregularities. An analytic solution is obtained

for r in the strong scatter regime by use of the quadratic approximation
for the phase structure-function. The thin phase-screen approximation to
the thick layer is then utilized and great simplification to the analytic
expression for r is obtained. The relationship between the impulse
response function of the propagation channel and the two-frequency mutual

coherence function and its Fourier transform is then used to directly
obtain statistical realizations of wide bandwidth signals.
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The accuracy of the thin phase-screen approximation is discussed
and several comparisons of statistical signals with signals obtained
directly from the MPS propagation simulation are shown in Section 3.

The analytic solution for r which is the foundation of this
statistical technique to generate realizations is presented in Section 4.

1.4 SOLUTION FOR TWO-FREQUENCY MUTUAL COHERENCE FUNCTION

An analytic solution is obtained in Section 4 for the two-posi-
tion, two-frequency mutual coherence function for spherical wave propaga-

tion. This solution provides the basis of the statistical signal genera-
tion technique presented in Section 3 of this report. It is assumed that
strong scattering conditions prevail and that the quadratic approximation
to the phase structure-function is valid. Here the ionized scattering
region occupies a thick, finite layer with transmitter and receiver
located in free space on opposite sides of the layer. General analytic
solutions are derived for two cases. In the first case the random slab is
represented by a one-dimensional power spectrum of electron-density fluc-
tuations corresponding to propagation through elongated irregularities as
would occur for an equatorial satellite link to a ground station. In the

second case the random slab is represented by isotropic ionization irregu-
larities which corresponds to the physical geometry of propagation along
the direction of the earth's magneLic field.

The case of isotropic irregularities represents a worst case

condition while the case of infinitely elongated irregularities leads to
less severe propagation conditions. Both cases taken together represent
the extremes of the range of results to be expected for propagation
through ionospheric fluctuations, or ionization irregularities caused by

4 barium cloud instabilities or by nuclear detonations.

For both cases the complex general analytic results are simpli-
fied by use of the thin phase-screen approximation (zero slab thickness)
to obtain useful analytic expressions for r as well as the resulting power
impulse response function. It is shown that the impulse response to an
incident power delta function reduces to an exponential form in the strong
scattering limit and to a Gaussian form in the weak scattering limit. The
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Gaussian form corresponds to pulse wander and dispersion while the expo-
nential form corresponds to diffractive pulse spreading produced by multi-

path effects.

Since the thin phase-screen results developed in Section 4 are

used in the statistical signal generation technique described in Section
3, the accuracy of the thin-screen approximation is a matter of some
importance. This approximation is considered in some detail in Section 4

where comparisons of the thick layer cases to the thin phase-screen case
are presented for the S4 scintillation index, the mean time delay, <T>,
and the time delay jitter, (T. It is found thdt the thin phase-screen
approximation gives exact results for <T> and accurate results for S4 and

CT'

The simplification resulting in the thin phase-screen approxima-
lion for the two-frequency mutual coherence function for spherical waves
•lso leads to simplified expressions for two very important parameters

that describe the propagation medium. These parameters are the signal
decorelation distance (and time) and the coherence bandwidth. Both
parameters are defined and discussed in Section 4 and it is shown that the
signal decorrelation time and the coherence bandwidth both obey the prin-
ciole of reciprocity.

21



SECTION 2

MPS NUMERICAL PROPAGATION SINULATION

2.1 PHASE-SCREEN TECHNIQUES

Random variations in the amplitude and phase of a propagating
wave, called scintillations, are caused by propagation through a region in

which the electron density is irregularly structured. In ionospheric
plasmas, electron density structure is produced by plasma instabilities

which cause the ionization to break up into long filaments, or striations,
aligned with the earth's magnetic field lines (Linson and Workman, 1970).

The instability mechanisms accounting for ionospheric irregularities have
been the topic of debate for many years and are sunmarized in a recent

review (Basu and Kelley, 1978) . Roughly speaking, one may describe stria-
tions as long sheets or rods of relatively high electron density imbedded

in a background of lower electron density.

Figure 2-1 illustrates the geometry of the problem. Propagation

of satellite signals through a large striated region presents the problem

of radio wave propagation through a thick medium composed of random fluc-
tuations in the index-of-refraction. Consider for a moment a plane,

unmodulated carrier wave traversing the striated region. The wave first
suffers random phase perturbations due to variations in the phase velocity

within the medium. These phase variations in the propagating wavefront
introduce small random changes in the direction of propagation of the

wave. Thus portions of the once plane wavefront now propagate in different
directions relative to other portions. As the wave propagates farther,
diffraction or angular scattering causes constructive and destructive
interference which introduces fluctuations in amplitude as well as phase.
These time varying amplitude and phase fluctuations represent an undesired

complex modulation of the carrier.

The actual satellite signal encompasses a spectrum of frequen-

cies because of the transmitted modulation. This transmitted signal can
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'igure 2-1. Propagation of signials through a dicturbed trcisionosphericI ~c~n-unicat ions channel.
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be Fourier decomposed, and the propagation of each spectral component can
be analyzed. Because the phase velocity in an ionized mediLrt dpoends on

wave frequency, each spectral component experiences somewhat different
phase perturbations and hence exhibits different amplitude and phase scin-

tillations after propagating to the receiver. Thus the received signal
spectrum is distorted by both the temporal (time selective) and dispersive
(frequency selective) properties of the ionospheric channel.

Radio-wave propagation through an extended region of irregular-

ities has been studied for many years by numerous researchers (Bramley,
1954; Ratcliffe, 1956; Mercier, 1962; Tatarskii, 1967 and 1971; Ishimaru,
1978 and references therein). Although partial solutions are available in

both weak (Tatarskii, 1967) and strong scattering cases (Fante, 1975 and
1981), no general analytical solution has been obtained even for a single
frequency, much less for a wide-band signal. However, the problem may be
solved by the use of an analytical/numerical technique known as the
multiple phase-screen (MPS) method (Knepp, 1977; Wittwer, 1978).

The use of phase-screen techniques to calculate the propagation
of electromagnetic waves was formulated as early as 1956 by Ratcliffe. A
number of researchers have used phase-screen techniques in the solution of
problems involving propagation through random media (Mercier, 1961;
Salpeter, 1967; Jokippi, 1970; Buckley, 1975; Rino, 1980). Recently,
phase-screen techniques have been used in the simulation of adaptive

optical systems (Brown, 1975) and in the propagation of high energy laser
beams subject to thermal blooming (Fleck, et al., 1976). The use of

phase-screen techniques to calculate the propagation of wide bandwidth
signals is new.

The analytical foundation of the MPS technique was neatly set

forth by Ratcliffe in 1956. The striated ionosphere is represented by a
series of thin diffracting screens at various points along the propagation
path. Each screen is perpendicular to tne path and consists of a random
phase equal to the integrated phase change due to electron content within

the local region represented by the screen. An incident electromagnetic
wave emerges from the screen with this random phase shift superimposed.
Thus, at any position along the path, the wave can be represented by a
complex field whose amplitude and phase are functions of position in a
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plane perpcndicular ýo the nominal direction of propagation. The rippled
wave field can be thought of as a collection of uniform plane waves

traveling in slightly different directions. This collection of plane
waves, called the angular spectrum of the wave field, is given by the

spatial Fourier transform of the field distribution over the diffracting
screen. The angular spectrum can be propagated to the riext diffracting

screen by introducing the free-space phase-shift. Transforming back to
spatial coordinates yields the incident electric field distribution, which

is then perturbed by the random phase-shift in this screen. The modified
angular spectrum is obtained and propagated to the next screen, and the

process is repeated until the field distribution is obtained at the
receiver plane.

In this section the MPS propagation simulation and its limita-

tions are described with some results included .rom an earlier report
(Knepp, 1977). Time-domain results after propagation through a strong
dispersive Gaussian lens are presented and shown to be identical to analy-
tic results. Also shown are predictions of the expected dispersive and

scattering effects due to propagation of a pseudo-random phase-shift keyed
modulated waveform through a finite sized barium cloud. Measured results

from a later experiment have been provided by Dr. James Marshall and are
shown to be very similar to the pre-experimental predictions.

2.2 FORMULATION

In the parabolic approximation, let the electric field be
written

E(x,z,w) = U(x,z,w) exp(-ikz) (2-1)

so that the parabolic wave equation (Tatarskii, 1971) becomes

32Uj au
- 2ik - + 2k2 An(x,z,w)U = 0 (2-2)ax2 3z

where k is the wavenumber and An is the variation in the index-of-refrac-
tion. For ionization irregularities
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AN re
2An e - ANe (2-3)

nce

where ANe is the variation in the electron density, nc is the critical

electron density and re is the classical electron radius (2.82x10- 15m).
A derivation of Equation 2-2 is presented in Section 3 for the more gener-
al case where the propagation medium has a background ionization level.

In Equation 2-2 it is assumed that the mean or background ionization level
is zero. In writing Equation 2-2 it is also assumed that the z-direction
is the direction of propagation. The striations or irregularities are
assumed infinitely elongated in the y-direction as would effectively be

the case for field aligned ionization and a satellite communication link
between a synchronous satellite and an equatorial ground station. These

assumptions limit the application of the MPS simulation to a two-dimen-
sional geometry with no variation in the y-direction. The simulation

could easily be extended to handle a three-dimensional geometry but at
considerably greater cost in computer resources.

Now assume that the ionized region has been divided into a

number of thin layers, with each layer perpendicular to the direction of
propagation. Consider a layer of thickness az centered at zero z. For

small AZ, the equation for propagation through this thin layer is obtained
from Equation 2-2 with the first term neglected. The remaining differen-
tial equation is easily solved.

AAz/2Z
AZ, = U(x,- ,) exp-ikf An(x,z',w)dz' (2-4)
2 2-z/

The exponential quantity is simply the geometric optics phase change
imparted aft-r propagation through the layer. Equation 2-4 states that
transversal of a thin layer by a propagating wave is accomplished by

simply adding the phase change associated with the layer to the phase of
the electric field at the entrance to the layer.

Now collapse the irregularities in every thin layer to thin
phase-screens whose effect is represented mathematically by Equation 2-4.
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Now the ionized medium is represented by a series of thin phase-screens

separated by free-space. Equation 2-2 is valid for free-space propagation
in the region between the phase-screens if the last term of the equation
is neglected. The resulting equation is easily solved using Fourier

transform techniques. The solution for free-space propagation from z1 to

z2 can be written

tJ(K,z 2 ,W) = f fU(xIz21 w)e-KXdx
271

= U(K,zlw) exp[iK2 (Z2-Z,)/2k] (2-5)

U(xZ 2,w) = fU(Kz 2,W)e ixdK

f f U(Kzlw) exp[iK2 (z 2-z 1 )/2k+iKx]dK (2-6)
-00

Equation 2-1 may be inserted into Equation 2-6 to write the equation
governing free-space propagation in terms of the electric field

E(x,z 2 ,w) = eik(z2 "Z) fE(K,zi,w) exp[iK2(z 2-z 1 )/2k+iKx]dK (2-7)
-00

Equations 2-4 and 2-7 may be used to propagate an electromagnetic wave
from the transmitter to the receiver as follows. Assume that the incident

wave is a plane wave as it approaches the first phase-screen. Immediately
after passing through this phase-screen only the phase of the electric
field is affected according to Equation 2-4. The suitably modified elec-
tric field is then Fourier transformed to obtain E(K,z,w) at the exit of
the first phase-screen. Free-space propagation to the next phase-screen

(located at z2 ) is then accomplished according to Equation 2-7. Equation
2-7 is implemented numerically in two steps; first a multiplication in
K-space by exp(iK2 (z 2-z1 )/2k) and then by an efficient fast Fourier trans-

form. This brings the wave to the next phase-screen where the above
process is repeated until the receiver plane is reached. Thus a niamerical-
ly efficient solution to the parabolic wave equation is obtained.
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In effect this solution is equivalent to replacing the scatter-
ing medium by a number of diffracting phase-screens separated by free-
space. For example, if three phase-screens are used to represent the
geometry of Figure 2-1, the resulting MPS geometry is shown in Figure 2-2.

This formulation in two dimensions assumes that no variations

occur in the third or y dimension. This is often a good approximation for
ionospheric propagation because the striated ionization is often elongated

parallel to the earth's magnetic field (Paulson and Hopkins, 1978; Fremouw
et al., 1978). The formulation can easily be extended to three dimen-
sions, at the expense of a significant increase in numerical computation.

2.2.1 Phase Power Spectral Density

Specific realizations of the random phase *(x) that define a

phase-screen are obtained by sampling a dihtribution of phase-shifts
having statistical properties determined .. , the statistics of the electron
density irregularities. These statistics are specified by the spatial

power spectral density (PSD) of the irregularities or, equivalently, by
their spatial autocorrelation function.

The relationship between the PSD of the phase and the PSD of the
in-situ electron density irregularities is obtained as follows. From

Equation 2-4 the phase that defines a phase-screen is given by

Az/2
*(x) = -k f An(x,z')dz' (2-8)

-Az/2

where the frequency dependence is temporarily omitted for convenience.

Using relation 2-3 the phase autocorrelation function can be formed

B (&) = <k kd

Az/2 Az/2
= r.2 f f <M (Xz)AN (x+Ez')> dzdz' (2-9)

A-z/2 -Az/2
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Zr---------------------

Figure 2-2. Multiple phase-screen representation of the geometry of

Figure 2-1.
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The quantity within the angle brackets is recognized as the correlation
function of electron density fluctuations BNe(E,z-z'). The double inte-

gral here can be reduced to a single integration by a change of variables
as explained in Papoulis, 1965, p. 325 with the result

AZ
B¢() = re2X 2AZ f (1-lz'I/Az)BNe(•,z 0 )dz' (2-10)

If Az is greater than the correlation length of the electron density
fluctuations, the contribution of the second term in the integration will
always be negligible so that the limits can be extended

B r2X2 Z f BN (&,z')dz' (2-11)
* e C- e

Evaluation of this expression at E = 0 gives for the variance of the phase

fl uct uat ions

2= r22AZ f BNe (=0,z')dz' (2-12)
* e - e

Multiplication of Equation 2-11 by exp(-iK&)/2n and integration with

respect to E gives

1 f B (ý)e'K~ d{ = (rex 2 Az/27r) f fBN (&,z')eiKdz'dý

- m -= -C e

= S (K) (2-13)

The term on the left hand side of the equation is recognized as the phase

PSD and thus the one-dimensional phase PSD is simply related to the inte-
gral of the two-dimensional autocorrelation function of in-situ electron

density fluctuations. Now the relationships between one-dimensional PSD's
and two-dimensional PSD's and autocorrelation functions are
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BI(x) = fSI(K)eiKxdK (2-14)

S1(K) = 2"- B i(x)e'iK;dx (2-15)

B2 (x,y) f f S2 (Kx,ly)e U xiK dKxdKy (2-16)

=f .[ .- ~xiy

S2(Kx,K Y) = f f f B2(x,y)e - x dxdy (2-17)

With these transform relations in mind it is seen that Equation 2-13 has
the form of Equation 2-17 and

S (K) = 2nr 2 X2Az Se(KxKz=O) (2-18)
* e N Se (Kx~O

Equations 2-11 and 2-18 are general relationships between PSD's and auto-
correlation functions of phase and electron density fluctuations.

2.2.2 Power Law Phase PSD

A number of different phase PSD's are available for use in the
MPS propagation simulation. The most useful PSD is the power law form
with phase variance, outer scale, and inner scale specified as input. The
power law form is representative of many in-situ observations (Dyson, et
al., 1974; Phelps and Sagalyn, 1976) as well as numerical simulations of
striation spectra (Scannapieco, et al., 1976).

For this case the two-dimensional electron density PSD has the
form (Shkdrofsky, 1968)

S2N (2")-"I2(xi/Lo)(m-2)/2 Km/2  Ai + K2 + 1/L (2

e KxK)/ 1 I0L/ 0 (2-19)

kA (Z 2 + K2 + 1/L2K~m2)2(i/o 0 1 x z 0
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where K. is the Bessel function of the third kind. The PSD has a

(K2 + K2)-m/2

behavior for values of scale size between the inner scale Li and the

outer scale LO. The corresponding two-dimensional autocorrelation
function is given as

2(x,z) = /eX2 + Z2 + i?) K(m L-2 / X2 + Z2 +
e (/Lo)(m2)/2 K0(2)/2(/L )

L 0 (( m -2 ) / 2 / 0 ( 2 -2 0 )

The corresponding one-dimensional phase PSD is obtained with the aid of

Equations 2-12 and 2-18 as

S 0(K x) = (2n)'- 2 i(xi/L°)(m'1)/2 K i( i.2 + 1/L2) (2-21)

2 + 1/42(r~t/2•iLo •i €x 0

(M-0)/2

where

2 = 02 (2,TziL0)1/2 reX2Az K(m-l)/2 (Xi /LO) (2-22)
N¢ eNe K(m-2)/2 ( Xi /LO)

For the often used case of a K-3 one-dimensional phase PSD, m has a value
of three and in the limit that Lo>xi

02 = 2(reW)2 LoAZ 02e (2-23)

2.2.3 Gaussian Phase PSD

A second useful phase PSD is the Gaussian form

= 1 1/2 Lo 0 exp[- K2LI2/4] (2-24)
Kx 0 - 0
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which has the one-dimensional autocorrelation function

B (x) =2 exp[.x2/L2] (2-25)

For the Gaussian PSD the relationship between the phase variance and the

electron density variance is

00 Vn (re) 2 LoAZ 0 (2-26)

2.2.4 Phase-Screen Generation

In this subsection, the numerical technique to generate a phase-
screen realization for the numerical MPS propagation code is discussed.
The goal here is to generate a stationary, random function &(n&x) which
represents the phase evaluated along the MPS grid. The spacing along the
MPS grid is Ax and n is an integer representing the n'th point on the
grid. Typically 214 (16384) discrete points are used to represent the
functions in the x-direction transverse to the direction of propagation.
As will be shown, &(nAx) is generated from initial knowledge of its PSD.
In continuous notation, the phase may be written as the Fourier transform

O(x) :f¢(K)eiKxdK (2-27)

In the discrete* case, as used in the MPS code

N-I i27mn/N
&(nAx) = * O(mAK)e AK n=O,...,N-1 (2-28)

m=O

Now if the Fourier transform of the phase was available, a phase-screen
realization could be easily generated by using Equation 2-28. For the
moment let us choose as the Fourier transform of the phase the quantity

* In this section all discrete sums are taken over a range of the index
from 0 to N-I.
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*(mK) rm[S (nAK) L/2] (2-29)

where S(mAK) represents discreta values of the known desired phase PSD.
In the following it is proven that this choice is correct. Here AK = 2W/L,
L is the length of the MPS grid, Ax = L/N and therefore Ax& = 2W/N. rm
is a complex number given as the sun; of two independent Gaussian random
variables with zero mean and variances• of unity

rm = V112 (gim + ig~m) (2-30)

Successive values of glm and g2M may be obtained numerically by samp-
ling from a pseudo-random sequence of ,v.ibers with a Gaussian distri-
bution. The factor of ,/1/2 is included so that

<rmrn> = mn (2-31)

It is apparent that with the above choicc For rm, ¢(nAx) is the sun of a
sequence of Gaussian variates and thus it,; real and imaginary parts both
have a Gaussian or normal probability dist.'ibution. Since the phase of an

individual phase-screen is a real quantity, one may choose either the real
or imaginary part of * computed in this manner. Or since the real and
imaginary parts are independent, each discrete Fourier transform may be
used to generate two phase-screens with a savings in computer time.

Now since the rm are independent, it is apparent that the
Fourier coefficients defined in Equation 2-29 are also independent. Thus
the phase power spectrum has the general form

<;(m&K) *(RAK)> - 6mnS(m&K) (2-32)

which is a requirement if the phase is to be stationary (Tatarskii,
1971). That is, if Equation 2-32 is satisfied, then the phase autocorre-
lation function <.(mAx)o*(nAx)> depends only on the separation distance
(m-n)Ax as it must for a stationary randor. variable.

In order to prove the validity of the choice of Equation 2-29 to
give a realization of the phase-screen it is convenient to calculate the
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discrete autocorrelation function. Under the ergodic hypothesis, ensemble
averages or expectations of random fields may be replaced by spatial
averages. Thus the phase autocorrelation function may be written

B W() =<(x+ *x)>

L

= 1 f ¢(x+&) *(x)dx (2-33)
0

In the discrete case of interest here

B (kAx) - (nAx+kAx)¢*(nAx)Ax (2-34)
Be Ln

Now the Fourier transform of € and €* given by combining Equations 2-28
and 2-29 may be used in Equation 2-34 to obtain

B (k1x) = I. I (L/2w)[S(mAK)S*(m'&K)]1/2

T = n m m'

xrmrm, ei2.nm(n+k)/N e-i2.nm'n/N& 2 Ax (2-35)

Now
Sei2imn/N e-i22 m'n/N . N Mm . (2-36)

n

So that Equation 2-35 becomes

B (kAx) = I S(mAK)ei27rmk/N IrmI2 &K (2-37)
m

A comparison of the above equation to the continuous relationship between

PSD and autocorrelation function as given by Equation 2-14 shows that the
PSD of the numerically generated phase is S(mAK)IrmI 2 . It is apparent
that different values of the index m correspond to different spatial-
frequency components of the PSD. Since Irml 2 is the sun of the squares
of two Gaussian variates, each of the Fourier components of the PSD of an
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individual phase-screen is a chi-squared variate with two degrees of free-
dom and a mean value of S(m&K). Thus for any given phase-screen realiza-
tion, the phase PSD will not, in general, be identical to the desired
PSD. However, the average PSD of many such phase realizations may be
obtained by taking the expected value of Equation 2-37. Since <IrmI 2> = 1

AVG[B (kAx)] = I S(mAK)ei 2 wmk/N (2-38)
m

Therefore the average PSD obtained from many phase-screen realizations is

the desired PSD, S(mAK), and Equation 2-29 is correct.

2.2.5 Criteria For tS Application

The application of the MPS propagation code requires that the
electric field and the phase be specified at a discrete number of grid

points. The number and spacing of these points must in general satisfy
the following criteria: 1) the phase distribution of a phase-screen must

adequately represent the actual phase, 2) the wave should propagate with-
out angular aliasing, and 3) edge effects or angular scattering off the
end of the grid should be minimal.

2.2.5.1 Phase Representation

Adequate phase representation is assured if the phase-screen
length L is at least 5 to 10 times as large as the phase decorrelation

distance or equivalently the outer scale.

L >5L
0

The spacing between grid points, Ax, should be several times smaller than

the inner scale. Thus

Ax < Xi/3
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.he change in phase from one grid point to the next should be less than ir

to satisfy the Nyquist sampling theorem. Mathematically

4(x 2) - 4(x) < , X2 - xi = AX

":n terms of the distance between sample points Ax, this constraint can be
wr,-r•i t t en

AX d- <

"This inequality can be written in an rms sense as follows. Under the
ergodic hypothesis discussed previ-usly the autocorrelation function can
be written

L

B () : <ý(x+d)e*(x)> f I j'(x+&)e*(x)dx (2-39)L o

TaKing the second derivative with respect to * and integrating by parts

d2. _ P+ d*(x), (2-40)d 2 \ dx dx /

Ecuacion 2-40 states the relitionship hetween the autocorrelation function
of the derivative of the phase and the second derivative of the phase
autocorrelation function. In a mean sqv-are 3ensc then

Kdo) 2\ -2 0_
dx / d 2  &=0

Thus in an rms sense the above li,,t on T.he grid spacing Ax may be

expressed as

Sd2B -1/

IX<37
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For a Gaussian phase PSD the second derivative term may be calculated from
Equation 2-25 as -2a 2/L 2 so that the necessary condition is

Ax < ffLo //2

2.2.5.2 Wave Propagation

In order to adequately represent propagation in free-space by
the use of the Fourier transform relationship of Equation 2-7, it is
necessary that the various functions involved be accurately sampled. To
satisfy the Nyquist sampling criterion the difference in the function

K2 AZ

must be less than n when evaluated from one value of K to the next. Since
the maximum value of K is AN/L where N is the number of grid points and L
is the grid length, the necessary condition is

I
2 N2 AZ 7 2 (N-1) 2 AZ

< IT

2kL 2  2kL 2

or
iT2NAz

kL
2

or

Az < 2LAx/x

This condition may be relaxed somewhat in practice if the phase PSD
is very small at large values of the wavenumber, K. In that case the high
wavenumber values are cut off by the phase power spectrum and small
inaccuracies in the phase are relatively unimportant.

2.2.5.3 Edge Effects

Because of the discrete nature of the MPS grid representation,

energy leaving one side of the grid appears on the other side. As the
propagation distance z increases this effect becomes more important. This
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effect must be controlled for a propagation solution to be valid. Since
the scattering angle is given by

:1 d (2-41)
k dx

where € is the phase at a phase-screen, the energy scattered at an angle e
travels a distance ze perpendicular to the direction of propagation after
propagating a distance z. To adequately insure against edge effects it is
necessary that the MPS grid size L be greater than ze for each propagation
step. Thus

2L2.5. as zdxId-

This expression may be represented in a mean square sense as in Section
2.2.5.1 as

L > z •0

For a Gaussian phase PSD, the second derivative is -2a 21L2 so that the
necessary condition is

L > __ x

V2 Tr L0

to minimize edge effects.

2.3 APPLICATION TO A GAUSSIAN LENS

In this section the numerical MPS propagation code is applied to
the problem of scattering by a single, deterministic Gaussian phase lens.

For this example of scattering from a non-random structure, theoretical
results are obtained using the Fresnel-Kirchhoff integral equation and are

shown to be identical to the numerical MPS results.

For this example a single Gaussian phase lens given by

¢(x) - o exp(-x 2/ro2 ) (2-42)
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is used at the first phase-screen location (z=O) with ýo chosen as 10
radians and ro set equal to the wavelength x. Since O(x) is negative
this Gaussian lens corresponds to a decrease in the ionization level below
the ambient and acts as a convergent or focusing lens. A pnsitive phase
would correspond to an increase in ionization and would act as a divergent
lens.

The intensity I = 1E12 was observed as a function of distance
from the lens, z/x as indicated in Figure 2-3. In this figure the
observation screens are aligned, so that features of the diffraction

pattern can be easily followed for changing propagation distance z/A.

The focal length for a Gaussian lens is given by (Salpeter,

1967)

F = kr 2/2° (2-43)
0 0

where k is the wavenumber 2,f/x. Taking r° = x and 1 10 radians, the
focal length F/x is 0.31 which corresponds quite well with the value of
z/x = 0.5 , shown in the figure where the intensity in the diffraction
pattern at x = 0 builds up to a maximum. At values of z/x greater than
the focal length, the diffraction pattern exhibits increasingly more com-

plex patterns associated with interfering rays coming from the edges of
the lens, rather than from the center.

An analytic relationship between the electric field at z = z,
and z = z2 is given by the Fresnel-Kirchhoff integral (Ratcliffe, 1956)

E(x,z 2 ) = [-i21r(z 2 -zl)/k]"'/ 2 f eik(z2-zl)

x exp{-ik(x-E) 2/2(z 2-z 1 )} E(E,z 1 )dE (2-44)

where E(x,zl) is the electric fielO as a function cf x in the z = z,
plane. For an initial electric field in the z = 0 plane given by

E(x,O) = exp[-iýo exp(-x 2/r2)]

0 40
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Equation 2-44 may be written as an infinite series by expanding
exp[-iýoexp(-x 2/ro 2 )] in a Taylor series as

OD n
ex = I(2-45)Sn=0 n!

The resulting integral over C may then be analytically performed

with the use of standard integral tables (Gradshteyn and Ryzhik, 1965).
The resulting electric field in the z = z 2 plane may be expressed as

E(x,z) = exp[ikz+ikx
2/2z]

Vikz

E (2n - i -1/2 exp x2 (2-46)x n! k2r2 k-2n--- - (241

n=O2nn=O ok2ro2 kz

This series is easily summed numerically and the results for several
values of z/1 are shown in Figure 2-3 to be identical to the MPS code
calculation for z/x < 2.

For z/x = 10 the multiple phase-screen calculations deviate from

the theoretical results because energy which has left one side of the grid

is coming back )nto the other side (this is the well known wrap-around or
aliasing effect in discrete Fourier transforms). This point illustrates
that care must be taken in the application of the MPS techniques to avoid

erroneous numerical results.

2.4 APPLICATION TO A RANDOM PHASE-SCREEN

This section contains a second application of the multiple

phase-screen propagation code to a problem for which analytic results are

available - propagation through a thin phase-screen characterized by a
Gaussian power spectral density. For this example, only one phase-screen
is used to characterize the random medium. The screen is located at z = 0
and is generated with a phase power spectral density (PSD) of
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Figure 2-3(a). Diffraction pattern of a Gaussian lens--numerical
results from simulation on left-hand side versus
theoretical results on right-hand side.
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Figure 2-3(b). Diffraction pattern of a Gaussian lens--numerical
results from simulation on left-hand side versus
theoretical results on right-hand side.
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S (K) !-1/2L 02 exp KZL2/4] (2-47)
2 0 [

where the scale size Lo is chosen as x and the phase standard deviation

Stakes on the values 0.1, 1.0, and 10.0 radians. The MPS grid here is
comprised of 2048 cells which represent a total length of 30x.

In the MPS simulation a plane wave then propagates through the
single phase-screen and is observed at a number of different receiver
plane locations corresponding to different values of the propagation dis-
tance from the phase-screen. At each receiver plane location defined by a

S~value of zr, the received electric field E(x,Zr) is observed.

To obtain statistical results for the received signal, the simu-
lation is exercised ten times with ten different phase-screen realizations
(each screen is generated using a different sequence of random numbers as
discussed previously). Figure 2-4 shows a plot of one of the ten phase-
screen realizations as a function of x/Lo, the normalized distance along
the MPS grid perpendicular to the direction of propagation. Note the

5.0 .-- r-I- r-I-r *-T

S2.5-

S0.0-
r44

•-2.5--

"5 10 15 20 25 30

X/LO

Figure 2-4. Realization of phase for a Gaussian PSD.
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rather smooth plot with very little rapid phase variation. This plot is
characteristic of a Gaussian PSD. The figure shows the phase over the
entire MPS grid; note that the phase is generated to be continuous at the
edges of the grid. This behavior is necessary to avoid errors associated
with taking the Fourier transforms of discontinuous functions. Phase-
screen realizations generated by the MPS code are always continuous as
demonstrated here. Similarly, the received electric field also possesses
this same type of continuity across the boundaries of the MPS grid.

The code has input options to provide for some statistical

analysis cf the generated phase-screens. Figures 2-5 and 2-6 show a
comparison of the desired phase-screen PSD and autocorrelation functions
versus the computed PSD and autocorrelation functions averaged over ten
realizations. The phase standard deviation, a , was 1 radian in the
plots. As can be seen in the plots, the agreement between the desired PSD
and autocorrelation functions and their numerically generated equivalents
is quite good.

Figure 2-7 shows another example of a phase-screen realization
which is generated using the same string of pseudo-random numbers as in
the previous case. Here the phase PSD is a K- 3 power law form with outer
scale equal to the wavelength. Note that the large scale structure in

both screens is quite similar since both are based on the sane random
number sequence. The appearance of the small scale structure in Figure

2-7 is caused by the relatively slow fall-off of the power law PSD with
increasing wavenumber (decreasing scale size). Figure 2-8 shows a com-

parison of the MPS generated phase PSD averaged over ten realizations with
the desired power law PSD. Again, in keeping with the results shown in
the previous example, the agreement between numerical and desired results
is quite good.

An additional check on the results of the MPS code for a Gaus-
sian PSD is made possible by comparing analytic results for the scintil-
lation index with theoretical results. The S4 scintillation index is
defined as the normalized variance of the received power IE12 , where E is
the received complex voltage

s4= K(IEI2_<IEl2>)2} /<IE12>2 (2-48)
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Figure 2-6. Comparison of correlation function of numerically generated
phase with desired analytic correlation function.

46



5.0

2.5

•0.0

•-2.5 -

0 0 15 20 25 30

X/L.

Figure 2-7. Realization of phase for a power law PSD.

-t7 ANALYTIC

1o.2P 
L NL14ERICAL MPS

10-7

7-4

0o-5

1-6 * .i , I .1 .I.It.I.,.I.,Ji

1071 100 to1

KL,

Figure 2-8. Comparison of numerically generated phase PSD
with desired power law PSD.

47



1.3 • • • ' , : . .

1.1 •10.0 radians:• 1.0 ,- "-- -- ®
0.9 -

>,0.8 -
IIIS0.7 - i,,"0. - /'o

S0.5 .

0.1

.01 0.1 1.0 10 100

PROPAGATION DISTANCE (Z/X)

Figure 2-9. S4 scintillation index for Gaussian spectrum. The solid lines
are analytic approximations valid for the weak-scatter case.

For weak scattering S42 is given in the thin phase-screen approximation
(Salpeter, 1967) as

S4
2 = 4 fS (K) sin 2 [K2z/2k]dK (2-49)

This integral is easily evaluated for the case of a Gaussian PSD and is
plotted as a function of z/x in Figure 2-9 for the three values of a of
0.1, 1.0, and 10.0 radians. The numerical results are shown as circles in
thiq figure and connected with dashed lines. Note the excellent agreement
for small values of a, and small values of the propagation distance z/X
where the weak scattering theory holds. For the larger values of z/X, and
0¢ > 1.0 radian the weak scattering result of Salpeter is no longer valid;
in this case the scintillation index saturates at a value of unity as is
predicted on theoretical grounds (Fante, 1975) and as is predicted by this
and other numerical MPS calculations.
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2.5 WIDE BANDWIDTH MPS CALCULATIONS

In the preceding formulation and examples, the MPS propagation

simulation was applied to a single wave frequency. For dispersive or fre-

quency selective ionospheric communication channels, it is necessary to
first determine the Fourier components or spectrum of the transmitted

signal. Then each of these Fourier components is propagated through an
identical sequence of phase-screens. If *c(x) is the phase distribution

for the center or carrier frequency, wc, then the corresponding phase
shift at another frequency in the signal bandwidth is

S= W ýc(X) (2-50)

Once each signal Fourier component has been transmitted, then a Fourier
transform is applied to obtain the resulting time-domain signal at the

receiver.

Now if the transmitted waveform consists of a complex envelope
modulated on a carrier it is shown in Section 3 that the received waveform

can be expressed in terms of a complex modulation envelope as

v(X,Zr9,t) = Re e(x,zr,t-Itd )ei (Wot+6°) (2-51)

where the complex envelope is given by the Fourier transform

e(XZr9,) = (1/2n)fM(v) U(xz r,+vwo)eivTdv (2-52)

M(M) is the spectrum of the transmitted signal envelope and U(x,zr,V) is
the solution to the parabolic wave equation for the case of irregularities
infinitely elongated in the y-direction. For simplification in this

section it is assumed that mean ionization effects are negligible in com-
parison to stochastic effects. In that case U(xzr,v) is a realization

of the solution to the parabolic wave equation given by the MPS simulation
for a particular value of frequency v. eo is the total mean phase shift
(at the carrier frequency) and td is the mcan group time delay. These
quantities are discussed in detail in Section 3 of this report.
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In the following sections, the MPS propagation simulation is
applied to obtain time-domain results for wide bandwidth signals after
propagation through ionization irregularities. Two interesting cases are
considered. In the first case time-domain results for scattering by a
strong Gaussian lens are presented and compared to theoretical results in
order to verify the MPS time-domain calculations. In the process some
interesting properties of the scattering process are noted and discussed.
In the second case the MPS code is used to predict the scattering proper-
ties of an ionized barium cloud through which a GPS-like pseudo-noise
spread-spectrum navigation signal is transmitted on a carrier at 100 MHz.

2.5.1 Time-Domain Propagation Through a Strong Gaussian Lens

As an example of the MPS propagation simulation when frequency
selective effects are important, the time-domain diffraction pattern of a
Gaussian lens is numerically determined and compared to theory. In this
example the single Gaussian phase lens is given by

ofc
¢(x,f) : cexp [-(x-xo) 2/ro2 (2-53)f0 0

where fc is the carrier or center frequency and is 100 MHz here, 0o is
70 radians, the lens is located at the center of the 50 km MPS grid and
has a half-width ro of 400 m. Since the phase here is positive this
Gaussian lens corresponds to an increase in ionization above the ambient
and thus is a defocusing or divergent lens.

The transmitted waveform consists of a single, band-limited tri-
angular pulse modulated on a carrier at 100 MHz. The spectrum of the
transmitted pulse is given by

fTc sin wfTC) 2,f

c t fTc i ,
- Tc

M(f) : (2-54)

0 otherwise

where Tc is roughly twice the total duration of this pulse.
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If the pUlse were not band-limited to _ l/Tc, the time domain
waveform would be given as

c ( si6\wmT c/Wi t '-

m(t) : T - e d (2-55)
fc wT

i IT, i,<Tc
Tc (2-56)

0 ,otherwise

where w = 2irf and the subscript - refers to the infinite bandwidth case.
In the case under consideration where the spectrum is limited to a total
bandwidth oi 2/Tc, corresponding tc the first nulls of the spectrum
M(f), the resulting transmitted time-domain waveform lacks the sharp tri-

angle edge~s at T = 0 and ± Tc and is a smooth function with continuous
first derivatives at these points. Also a loss of approximately 0.89 dB
occurs at T = 0 for the band-limited case as compared to the infinite
bandwidth case.

The case of a single transmitted triangular waveform described
above has an exact analog to the case of a rangig system that utilizes a
pseudo-noise spread spectrum ranging signal. In this type of ranging
system a high bandwidth phase-shift keyed signal is transmitted as a

random sequence of pulses called a pseudo-noise (PN) code. A PN spread
spectrum receiver is then used to correlate a local, receiver generated

code with the actual received code. This correlation operation is per-
formed in the receiver code correlator hardware. The code correlator

output can be shown (Knepp and Bogusch, 1979; Bogusch, et al., 1981) to be
identical to Equation 2-51 where Equations 2-52 and 2-54 define the appro-
priate quantit.es required in Equation 2-51.

Therefore the time-domain results to be presented in this

section can be interpreted in either of two equally correct manners. On
the one hand the results for the received signal may be interpreted as the
received envelope after propagation of a single, band-limited modulated
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triangular pulse through ý disturbed channel. On the other hand, these

same results may be interpreted as the output of the code correlator of a

spread spectrum receiver. In the latter interpretation Tc is the dura-

tion of a chip of the pseudo-noise code and 1/Tc is thus the chip rate.

In this example the chip rate is taken as 1O.23x106 bps which is the rate

used in the Global Positioning System (GPS). Thus the value of Tc is

approximately 97.75 nsec and the two-sided bandwidth 2/Tc which effec-

tively limits the spectral region of interest is 20.46 MHz for this

example.

,or the case of no scintillation, U(x,zr,v+uo) is unity and

the received signal is a smooth band-limited triangle. That is, for no

scintillation

U(xzrv+wo) = 1 (2-57)

and from Equation 2-52

e(x,zr ,T) L fM(v)eivTdv = (I.1T1/Tc)BL (2-58)

where the subscript BL indicates that the triangular waveform is band-

limited.

For a non-selective fading case, where the MPS solution to the

parabolic wave equation, U(x,zr,v+uo) is independent of frequency v

but the amplitude and phase of U are functions of x, U can be written as

U(x,zr ,v+wo) = U(Xzr) (2-59)

and the received complex envelope is then

e(x,zrT,) = U(x,zr)(I-ITI/Tc)BL (2-60)

In this case the complex envelope retains the triangular form of the

transmitted waveform in delay, but varies in amplitude and phase as a

function of x, the distance along the MPS grid.
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Note that the received signal here is a function of x, the dis-
tance along the MPS grid, zr, the propagation distance, and T, the time
delay. For a moving receiver, or for motion of the striations, the func-
tional dependence on x is converted into time dependence by inclusion of
an effective velocity which converts motion of the line-of-sight path into
motion along the MPS grid. At a single position x or a single instant in
time x/veff, it is possible to receive a signal that is non-zero over a

range of delay values, T. This situation is the case when angular scatter-
ing acts to cause multipath effects where the signal propagates over a

number of slightly different paths and thus arrives at the receiver at
different delays corresponding to the different paths. The difference be-
tween time and time-delay in this context is discussed further in Section
3.2.3.1.

In the selective fading case U(x,zr,v+wo) is a random func-
tion of both x and v and the triangular waveform suffers distortion since
each spectral component of the signal experiences different degrees of
fading. The top portion of Figure 2-10 shows an example of the amplitude
of the received triangular pulse for the case of non-selective fading.
The bottom portions of the figure show examples of the received signal
during selective fading conditions. The resulting distorted waveforms may

be interpreted as being the superposition of a number of triangular
signals which have propagated over different geometric paths to reach the
receiver at a number of different time delays. Thus the distortion shown
is always extended or elongated in the direction of increasing or positive
time delay.

Most of the results to be presented for this deterministic exam-
ple are obtained using the Fresnel-Kirchhoff Equation 2-46 valid for a

single Gaussian lens discussed previously. These results were compared to
MPS calculations and found to agree. With this in mind the two different
but equivalent calculation methods will no longer be distinguished.

Now in the example under consideration, a single phase-screen

defined by 16384 grid points over a distance of 50 km is used to represent

the large Gaussian lens described by Equation 2-53. A plane wave

E(x,z=O) 1 (2-61)
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Figure 2-10. Example of envelope of wideband signal after
propagation through nonselective and frequency
selective propagation channels.
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is incident on the lens. 64 distinct frequency components are used to
represent the signal spectrum over the null-to-null bandwidth of 20.46 MHz

centered at the carrier frequency of 100 MHz. Each of these frequency
components of the signal is then propagated through the environment which

consists of the single, strong Gaussian lens. The solution U(x,Zr,v+wo)
to the parabolic wave equation is obtained via MPS simulation at 64 values

of the frequency v and several values of the propagation distance zr-
To obtain time-domain results for the received signal envelope Equation
2-52 is applied directly.

First consider the propagation of the single discrete frequency

component at 100 MHz. Figures 2-11 to 2-15 show the received signal
amplitude and phase for the 100 MHz frequency component of the spectrum at

distances of 3, 5, 10, 50, and 100 km from the lens location. It can be
seen that the effect of this defocusing lens is to cause energy to scatter

away from the center of the lens toward the edges. Thus at distances of 3
and 5 km the energy can be seen to focus near the edges of the lens with a

reduced signal level immediately below the lens center at a distance of
zero on the figure. The geometric focal distance of a convergent lens of
this size is 2.4 km (Equation 2-43) which corresponds reasonably well with
the edge focusing observed at 5 km. At a propagation distance of 100 km

it can be seen from Figure 2-15 that the signal level has faded 16 dB over
a large 2 km region just below the center of the lens. At 100 km the usual

ringing which occors in any diffraction pattern is evident. Also note from
Figure 2-15 that tne signal level returns to 0 dB for distances greater

than 10 km from the lens center. This corresponds to the incident plane
wave which has propagated past the lens and remains undisturbed by tue
lens.

Figures 2-16 to 2-20 show the magnitude of the envelope of

the received time-domain signal le(x,zr,T)l for propagation distances of
3, 10, 50, and 100 km from the Gaussian lens. In these three-dimensional
figures the time-domain signal received at each succeeding value of x is

plotted behind the preceding received time-domain signal. Thus the MPS
x-axis is now directed into the figure.

In Figure 2-16 a 4 km interval centered immediately below the

lens center is shown. Near the two ends of the x interval shown the
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a strong Gaussian lens.
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received signal is identical to the transmitted signal and has the smooth
shape of a band-limited triangular waveform. Near the central portion of
the figure the received signal is delayed relative to the unperturbed
signal. This effect is caused by the effectively greater ionization
sampled by rays which travel through the center of the lens and hence
experience increased time delay. Figure 2-16 also exhibits the effects of
focusing which are shown as increases 4n signal level near the edges of
the lens. This behavior was discussed previously in conjunction with
Figure 2-11.

As the propagation distance increases the effects of diffraction
become more evident. Figure 2-19 shows the received signal at a propaga-
tion distance of 100 km. The two main effects of the Gaussian lens are
evident in this figure. First, in the central region of the figure cor-
responding to the region immediately below the lens center, there is a
minimum in received power caused by the outward scattering of waves away
from the lens center. Secondly, two secondary waves delayed up to 12
chips (1 chip = 97.75 nsec) with respect to the unperturbed wave are
apparent. These two secondary waves which appear on the figure as large
intersecting semicircles corresporia to two outward propagating spherical
waves which originate from points on the two edges of the original
Gaussian lens, i.e., at x = ± 400 m.

For the MPS calculation of the scattering properties of this
Gaussian lens, 16384 grid points are used to represent a spatial region
50 km in extent in the x-direction. In Figure 2-19 only 101 of these grid
points are shown over a region of 20 km. Thus much of the fine detail
available in the calculation is not shown in Figure 2-19.

Figure 2-20 shows a close-up of the MPS results for a propaga-
tion distance of 100 km. The 3 km region which extends to the center of
the MPS grid immediately below the center of the Gaussian lens is shown.
The fine details of the diffraction pattern at zero delay are shown as
well as the reduced signal level directly below the center of the lens.
Also note that the time delay of the wave that propagates directly through
the center of the lens is correctly given by ý0/2nf which for a phase of
70 radians and a frequency of 100 MHz is 1.11xi0- sec or 1.14 chips as
shown in the figure.
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Figure 2-17. Envelope of time-domain waveform 10 Ion from a
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Figure 2-19. Envelope of time-domain waveform 100 Ian from a
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This comprehensive example involves direct comparisons of the
time-domain results from the MPS propagation simulatio,; with theoretical
results for the case of a strong dispersive Gaussian lens. Although the
results are presented here as a straightforward example, many direct com-

parisons were performed during the work. Agreement between numerical MPS
and theoretical results was obtained in all cases.

2.5.2 Time-Domain Propagation Through a Striated Barium Cloud

In this section the MPS propagation simulation is applied to

predict the effect of a large, striated barium cloud on a wide bandwidth
spread spectrum signal. Here the propagation environment caused by a
striated, hour old, barium cloud is modeled as a single phase-screen. The
phase-screen model is based on analysis of the data taken during the
STRESS barium release series (Prettie and Marshall, 1978) 48 minutes after

the release of barium cloud Esther. The propagation results are intended
to provide predictions of the effects to be experienced during the PLACES*

barium release experiment scheduled for winter 1980. Back propagation
data provided by Dr. Prettie were utilized to provide a phase-screen

model* of Esther at 48 minutes that is comprised of two parts: 1) a large
deterministic Gaussian cloud which represents the unstriated portion of
the overall barium cloud and, 2) the striations represerted by a K-3

power-law phase PSD with phase stanuard deviation a of 33 radians at
the 100 MHz carrier frequency, with an outer scale of 390 m and an inner
scale of 10 m. The deterministic Gaussian lens is given by

ý(Xf) = 2 exp{-[(x-25)/5] 2} radians (2-62)

fc is the carrier frequency of 100 MHz and the distance x is given in
kilometers. Figure 2-21 shows the phase-screen realization of the barium
cloud used in the MPS simulation. The entire 50 km length of the MPS grid
is shown in this figure. The component of the phase due to the

* The details of this model are fully discussed in "Predictions of GPS

X-set Performance During the PLACES Experiment," by Knepp and Bogusch,
1979. PLACES is the acronyn for Position Location and Communication
Effects Simulation.
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Figure 2-21. Phase-screen realization as model ot scattering
properties of barium cloud Esther.

deterministic Gaussian lens is plotted separately in the figure. Note
that the phase-screen shown represents only a single realization of the
barium cloud and thus leads to only one realization of the received
signal. To obtain statistically significant results, a number of differ-
ent phase-screen realizations would have to be generated using different
random number sequences and the results of the propagation calculations
would have to be averaged.

In the PLACES experiment the transmitted signal is a spread-
spectrum pseudo-noise code at a chip rate of 10.23 Mbps. The chip dura-
tion Tc is again 97.75 nsec and the receiver is band-limited to the
null-to-null bandwidth of the transmitted code, 20.46 MHz. Thus the
three-dimensional plots of the received signal to be shown in this example
are interpreted as the output of the receiver code correlator although no
error is committ,ýd usiný the interpretation of transmitted and received
triangular pulses discussed previously. As before 16384 MPS grid poirts
are used to represent an actual qrid 50 km in length. Again 64 distinct
frequency components are used to represent the 20.46 MHz bandwidth.
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For this example results are obtained with the deterministic
Gaussian lens alone as well as with the entire barium cloud model. Figure

2-22 shows the time-domain signal scattered by the deterministic Gaussian
lens alone at a propagation distance of 100 km. As the central point
directly below the center of the barium cloud is approached from either
side, increasing delay is experienced because of the increasing ionization
(in the form of increased phase) along the propagation path. Directly
below the cloud center the delay should be

* 280 445.6 nsec (2-63)
2 rfc 27r 10- x 106

or 4.56 chips as shown on the plot. Also note the increased pulse spread-
ing in the time-domain which is apparent for that part of the received
signal subject to the largest delay. This dispersive spreading is caused
by the increased ionization near the center of the Gaussian lens. Finally
this large barium cloud is also acting as a divergent lens to direct rays
away from the lens center towards the edges of the lens. This slight edge
focusing is apparent in the increased signal level near the barium cloud
boundaries about 5 km from the center point.

Now consider the scattering effects of the complete PLACES bar-
ium cloud on the propagation of a 10.23 Mbps PN spread spectrum signal.
Figure 2-23 shows the output of the receiver code correlator for the total
PLACES barium cloud model (deterministic cloud plus striations). The
entire 50 km MPS grid is shown in the figure by displaying the code
correlator output at 101 equally spaced locations along the x-direction of
the MPS grid. Note the increased time delay at the central portion of the
cloud caused by mean electron density effects as modeled by the large
Gaussian lens. Since all the striations are confined to the central
region occupied by the barium cloud and each striation acts roughly as a
single Gaussian lens, it is easy to explain the appearance of the undis-
turbed region of delay space directly beneath the center of the cloud in
terms of the overlapping of a finite number of scattering patterns from
strong Gaussian lenses. The effect of a single strong Gaussian lens is
discussed in the preceding s•taction.
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Figure 2-22. Envelope of time-domain signal after propagation
through deterministic barium cloud.

0 4 8 12 16 20 24 28 32 36 40

TIME DELAY (CHIPS)

Figure 2-23. Envelope of received time-domain signal after
propagation through an ionized, striated
barium cloud.
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Only 101 of the 16384 MPS grid points are displayed in Figure

2-23 so that there appears to be little continuity between successive
individual code correlation functions. This strictly visual shortcoming
is remedied in the next figure.

Figure 2-24 shows the amplitude of the code correlator output

over the range from 26.50 km to 27.72 km corresponding to the scale shown
on the plot of the barium cloud phase, Figure 2-21. The cloud center is

located at 25 km on the MPS grid and so the 1.22 km region shown in Figure
2-24 is located just past the barium cloud center. Note how the overall
signal time delay spread is increasing as the distance increases. This is
due to the overlapping of the scattering patterns from the individual
striations which make up the random part of the barium cloud.

Results from the actual PLACES experiment were provided by Dr.
James Marshall (Marshall, 1982) and are shown in Figure 2-25. The actual
experiment and these results are described in the above reference and will
not be discussed here. However, it is noted that all the essential details

of the experimental results were accurately predicted in advance by use of
numerical MPS propagation simulation techniques. A comparison of Figures

2-23 and 2-25 shows that the major scattering features including the
effects of the mean barium cloud and of the combined scattering pattern of
the irregularities is accurately predicted. The total predicted time
delay of around 30 chips is also in agreement in both figures. These

results indicate that the MPS simulation can be used to accurately deter-
mine the effects of variations in the quantities that describe the barium

cloud including mean ionization and electron density PSD.

2.6 HOMOGENEOUS FLUCTUATIONS - r COMPARED TO THEORY

In this section numerical results from the MPS propagation code
are compared to theoretical approximations for the two-frequency mutual
coherence function and for the mean time delay and time delay jitter. Here
the theoretical results for the two-position, two-frequency mutual coher-

ence function are developed in Section 4 for the case of a homogeneous
thick scattering layer. As explained in Section 4, the theoretical results

69



0 4 8 12 16 20 24 a8 32 36 40

TIME DELAY (CHIPS)

Figure 2-24. Close-up of central portion of Figure 2-23.

source: Marshall, 1982
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Figure 2-25. Received PN code correlator output, PLACES experiment,

first beacon rocket.
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are derived on the basis of a strong scattering assumption using a quad-
ratic expansion for the phase structure-function (Sreenivasiah, et al,

1976; Sreenivasiah and Ishimaru, 1979).

First a detailed comparison of the analytic two-position, two-
frequency mutual coherence function with several interesting MPS cases is
presented. Then the results from a large number of MPS cases are compared
to theoretical results on the basis of the e 1 point of r(Ax=O, Af).

Consider the case of plane wave propagation of a wide bandwidth
signal through a strong scattering layer. The carrier frequency is 2.25
GHz, the phase standard deviation is 350 radians with a K-3 power-law PSD
between the outer scale of 1 In and the inner scale of 10 m. The layer
thickness is 1000 km and, after passage through the layer, the disturbed
plane wave propagates an additional 1000 km in free-space. Ten equally
spaced single phase-screens are used in the MPS simulation to represent
the thick layer. Each grid consists of 16384 cells or points which repre-
sent a spatial extent of 10 km.

A total of 32 discrete frequencies are used to represent the
signal spectrum over a two-sided bandwidth of 4.096 MHz. This bandwidth
corresponds to the null-to-null bandwidth of a pseudo-noise (PN) spread
spectrum code with a chip rate of 2.048x106 sec" 1 and with a chip duration
of 488.3 nsec. Equivalently this null-to-null bandwidth may be used to
represent a single modulated triangular pulse band-limited to 4.096 MHz
with the form

M(T) = 1 - ITI/Tc, ITI .< Tc (2-64)

where Tc is 488.3 nsec.

Figures 2-26 through 2-31 compare MPS results for the two-
frequency mutual coherence function r(Ax,Af) with the analytic results
given by Equation 4-72. Figure 2-26 shows the magnitude of r as a func-
tion of Af for parametric values of Ax which correspond to multiples of
the distance between cells on the numerical MPS grid. The agreement
between the MPS and the analytic results is seen to be quite good for this
case with some bias toward a higher calculated correlation than predicted
analytically.
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Figure 2-26. Comparison of magnitude of r, single MPS realization
versus theory.
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Figure 2-27. Comparison of phase of r, single MPS realization
versus theory, mx = 0.
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Figure 2-28. Comparison of phase of r, single MPS realization
versus theory, ax = 0.61 m.
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Figure 2-29. Comparison of phase of r, single MIPS realization
versus theory, &x =1.22 m.
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Figure 2-30. Comparison of phase of r, single stS realization
versus theory, Ax = 1.83 m.
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Figure 2-31. Comparison of phase of r, single statistical realization
versus theory, Ax =2.44 m.
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One of the assumptions involved in the strong scattering theory
discussed in Section 4 is that the bandwidth of interest is small relative
to the center frequency so that the refractive index may be taken to be
independent of frequency within the frequency band of interest. As a
result of this assumption the analytic two-frequency mutual coherence
function is symmetric about the center frequency. As can be seen, the MPS
result for r is not synmetric about zero Af but is close enough to justify

the analytic approximation. Since the index-of-refraction is a function
of frequency, symmetry about zero Af does not actually occur; but, as isshown in the figure, this symmetry can be a valid approximation.

Figures 2-27 through 2-31 compare the MPS results for the phase

of r(Ax,Af) with the analytic results. The numerical MPS results are shown
at the same Ax values as shown in the amplitude results just compared.
Again the comparison is quite good especially in the most important region
near the carrier frequency where Af is small. This region is important to
time-domain calculations since in any modulation format most power is
transmitted at or very close to the carrier frequency with a gradual
decrease in transmitted power spectral density for frequencies farther
displaced from the carrier frequency.

Figure 2-32 shows an example of the time-domain results for this
homogeneous MPS case. The amplitude of the received triangular waveform,
Ie(x,zr,T)I is plotted. 101 curves are shown in the figure as a
three-dimensional plot with curves for successive x-values plotted behind
those for prior x-values. Each individual curve represents the received
time-domain signal observed at an individual MPS cell, separated from the
next by 0.61035 m. This plot shows only the first 101 cells of the total
of 16384 generated but is quite useful to display the time-domain results
because of the homogeneous geometry.

Figure 2-33 shows the average pulse shape defined as the average

over x of the amplitude of the received complex envelope

<le(x,zr,T) I>x

where the subscript on the angle brackets indicates that the averaging is
performed over x. The curve shown is obtained by averaging only the first
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Figure 2-32. Envelope of received time-domain waveform--first,
101 x-values from MPFS simulation.
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Figure 2-33. Average received time-domain envelope--MPS signal
realization.
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2048 points of the total 16384 point MPS realization. This case is dis-
cussed in more detail in Section 3 where a generated statistical signal
realization is compared to the MPS results shown here.

Figures 2-34 to 2-37 show additional comparisons of MPS calcu-
lations of the magnitude of r with the analytic, strong scattering results
of Section 4. The cases shown are calculated for a satellite communica-
tion system with an 80 MHz bandwidth spread spectrum signal at a carrier

frequency of 7.5 GHz. All four cases have a K- 3 one-dimensional phase
power spectrum.

In Figures 2-34 to 2-36, the MPS grid length is 30 Ian with

16384 grid points, the striation layer thickness, L, is 14000 km with a
free-space propagation distance Zr-L of 1000 km (see Figure 2-2). In
all three figures the inner scale is 10 m. In Figure 2-34 a, is 300
radians and the outer scale is 3 km. Figure 2-35 shows results for a
similar case to Figure 2-34 but with a smaller phase standard deviation,

Ov of 150 radians. In the comparison shown in Figure 2-36, a, is 100
radians and the outer scale is 1 km. The results shown in Figure 2-37 are
for a layer thickness of 1000 kn centered 1500 km from the receiver

plane. Here the outer scale is 10 km, the inner scale is 10 m and the MPS
grid length is 100 km with 16384 grid points.

The agreement between the MPS results and the analytic results

is quite good for all these cases with the largest difference, on the
order of 20 to 30 percent near the maximum frequency deviation Af of 40

MHz shown for Figure 2-37. However, this case shows evidence of signal
focusing with a measured S4 scintillation index of 1.15 characteristic of
non-saturated scintillation; as such the strong scattering assumption
involved in using a two term expansion for the phase structure-function is
invalid.

In order to make possible a comparison of a large number of MPS
calculations with analytic results, one feature of r(Ax=0,f) is selected
for comparison purposes. Figure 2-38 shows the comparison of the selected
measure fr' The quantity fr is defined such that, if the magnitude of

r(Af,Ax=O) is larger than i/e for fmin .f_< fmax, then the value of
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Figure 2-34. Comparison of amplitude of r, single HPS
realization versus theory.
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Figure 2-35. Comparison of amplitude of r, single MPS

realization versus theory.
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Figure 2-36. Comparison of amplitude of r, single MPS
realization versus theory.
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Figure 2-37. Comparison of amplitude of r', single MPS
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Figure 2-38. Comparison of two-sided bandwidth, fr, many MPS calculations
versus theory.

f i max-min fr can thus be seen to be a measure of the two-

sided bandwidth. Table I is a list of the two-sided bandwidtn results

presented in the figure and shows the pertinent MPS parameters that arE

used. In all cases a K-3 phase PS0 is used, 16384 points comprise the MPS

grid and the inner scale is fixed at 10 m. L. is the outer scale, L is

the scattering layer thickness and zr-L is the free-space propagation

distance between the receiver plane and the nearest edge of the scattering

medium. Figure 2-2 depicts the MPý geometry. Because of the large number

of varying quantities that are used here, statistical measures that

describe the overall deviation are rather meaningless. Suffice it to say

that the results are in quite rood agreement. This agreement is somewhat

unexpected because of the apparently severe limitations of the analytic

calculation. However, for the most part, the MPS cases described here do

indeed represent strong scattering situations and seem to agree quite well

with the theory.
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Table 2-1. Analytic versus numerical MPS comparison of 1/e points
of r(Ax=O,f).

f o L L z-L fo 4) o r r"

MPS THEORY

0.1 GHz 33.0 rad 0.39 km 10 km 100 km 1.2 MHz 1.2 MHz

0.15 22.0 0.39 10 100 6.2 5.5
0.20 16.5 0.39 10 100 16.4 14.3

1.38 300 5 1000 1000 9.6 8.2

1.38 500 5 1000 1000 4.4 3.9

2.25 350 1 1000 1000 2.3 1.8

7.5 100 1 14000 1000 46.5 42.4

7.5 150 3 14000 1000 84.0 82.5

7.5 300 3 14000 1000 31.5 28.1

7.5 300 3* 14000 1000 39.0 37.8

7.5 300 10 1000 1000 82.0 70.2

For this case the Inner scale Is 100 m. For all other cases here the Inner scale Is 10 m.

2.7 COMPARISON OF <T> AND aT TO THEORY

An important measure of the effects of scintillation on propaga-

tion of wide bandwidth signals is the mean time delay and the time delay

standard deviation. These quantities are direct measures of the effects

of time delay jitter in the mean sense and also serve as useful character-

izations of the propagation environment.
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Now let us define the mean time delay <T> and the time delayjitter T3 as

<Tm> = \ e z (2-65)

K le(x'Zr'T)1 2 d )x

<T> = <T'> (2-66)

a2 = <T 2> - <T>2 (2-67)
T

where the subscript x on the angle bracket indicates that the average is
obtained over the x-values along the MPS grid. e(x,zr,t) is the
received complex envelope as defined by

e(x,zr%,) f L_. fM(v) U(xzr,v+uo)eiv'dv (2-68)
.00

where M(v) is the transmitted signal spectrum and U(x,Zr,v++o) is a
realization of the solution to the parabolic wave equation at a frequency
V+Wo. It is apparent that U(x,Zr, oI) is the received signal amplitude and
phase at the carrier frequency. In the comparisons to be shown in this
section, the transmitted signal is always a band-limited triangular wave
with a spectrum given by Equation 2-54.

The ensemble average defined in Equations 2-65 to 2-67 is

obtained in the case of a numerical MPS calculation by averaging the
results over the MPS calculation grid, which here means averaging over all
x-values. As can be seen, <T> and (T are both functions of the receiver
location zr, but this dependence is omitted for notational convenience.

The numerical MPS results are to be compared to results derived

following the moment method formulation of Yeh and Liu (1977), with the
single exception that the ionization irregularities are assumed elongated
infinitely in the y-direction so as to maintain the MPS geometry. The
moment method results can be derived as
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XO'(2Zr-L) A2
<T> = r 2 1 (2-69)

4 1wAo

02 = t 2 (O)+ +
T 2o0

a 4 X2 A2
+ 2  (12Z2 _ 16Lzr + 6L 2)

2472 o2A2

2 X 2 A4

+ (3z 2  3Lz + L2) (2-70)
2r2 ArW2

0 0

where L is the thickness of the ionized region and the free-space
propagation distance to the receiver is zr-L. t 2(0) is the spread of
the undisturbed time-domain waveform which here is

f T2Im(T)lI2
t 2 (0) = "" (2-71)

fim( "tll dT
--00

which for the case of a triangular pulse

m(T) = 1 Ii/T , ITI < Tc (2-72)

becomes
T2

t 2 (O) : c (2-73)
10

This result is a slight overestimate of the actual undisturbed waveform

spread because it assumes (in effect) an infinite bandwidth. However, the
approximation should be reasonably accurate since most of the power is
contained within the first null-to-first null bandwidth used here.
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The quantities A0 and A2 are defined by Equations 4-44 and 4-45
in Section 4.1.3. A4 is the coefficient of the next term in the expansion

of the phase structure-function and is defined similarly to A0 and A2 . For
the case of a K-3 Bessel function phase PSD with outer scale Lo and
inner scale xi,

A2/A0 = zn(t /Lo)/2L2 (2-74)

A//A0 = i/(8•Lo) (2-75)

Note that the result for <T> derived using the moment method of Yeh and
Liu is identical to the thick layer result derived in Section 4.4.1 and
presented in Equations 4-122 and 4-125. The second and third term of the
result for a2 is, in the thin layer approximation (L=O), identical to the
results of Equation 4-135 for a thin phase-screen. The A4 term is, of
course, not included in the theoretical results of Section 4 where only a
two term expansion of the phase structure-function is used.

Figures 2-39 and 2-40 provide a comparison of the MPS results
with the theoretical results obtained following the moment method calcula-

tion of Yeh and Liu. The results shown here encompass all MPS calculations
to date and involve five values of outer scale, three values of inner
scale, a range of carrier frequencies from 100 MHz to 7.5 GHz and several
different geometries. In all cases a K-3 phase power spectruxn is assumed.
Table 2 summarizes the important calculation parameters used and gives the
values plotted.

Fairly good agreement is noted in all cases with a tendency for
the analytic results to be somewhat larger than the MPS calculations. The
100 MHz carrier frequency calculation, listed first in Table 2, is omitted
from the figure because it would have required a much larger scale for the
gain of one additional point. The lack of agreement at the higher values
of <T> and a. may be caused by the impact of the narrow bandwidth approxi-
mation used in the theoretical calculation which becomes less appropriate
with increasing scintillation severity or increasing bandwidth.

84



2.-9
SJ2

0
A

V

-4b

Oo

0o . . . . I , , . . . . . . I . . . . . . . . .

0 1 2

tPS <bt (CHIPS)

Figure 2-39. Comparison of mean time delay, <t>, many
MPS realizations versus theory.

4.. .. . .

'- 2

233

0 1 2 3 4

MPS a, (CHIPS)

Figure 2-40. Comparison of time delay jitter, ot, many

MPS realizations versus theory.

85



Table 2-2. Comparison of analytic and numerical MPS results for
mean time delay and time delay jitter.

f T c 0 L o . L z -L <T>IT a /T

MPS THEORY MPS THEORY

0.1 GHz 97.5 nsec 33.0 0.39 km 10 m 10 km 100 kin 8.0 9.5 9.6 14.2

0.15 97.6 22.0 0.39 10 10 100 2.0 1.9 2.4 3.1
0.20 97.6 16.5 0.39 10 10 100 0.6 0.7 1.1 1.1

1.38 97.6 100 3 10 14000 1000 0.85 1.1 1.1 1.,

1.38 97.6 100 5 10 1000 1000 0.06 0.08 0.34 0.37
1.38 97.6 300 5 10 1000 1000 0.65 0.7 0.87 1.1

1.38 97.6 500 5 10 1000 1000 1.5 1.8 2.0 2.6

2.25 488.3 350 1 10 1000 1000 1.1 1.3 1.4 1.8

7.5 25.0 30 1 10 14000 1000 0.04 0.09 0.32 0.36

7.5 25.0 100 1 10 14000 1000 1.0 1.0 1.1 1.3

7.5 25.0 100 3 10 14000 1000 0.03 0.14 0.37 0.39

7.5 25.0 150 3 10 14000 1000 0.29 0.31 0.48 0.54

7.5 25.0 300 3 10 14000 1000 1.1 1.3 1.1 1.6

7.5 25.0 300 3 30 14000 1000 0.97 1.0 1.3 1.3

7.5 25.0 300 3 100 140(10 1000 0.84 0.76 0.87 0.97
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SECTION 3
STATISTICAL SIGNAL GENERATION

3.1 STATISTICAL SIGNAL REALIZATIONS

In this section a second technique is described to generate
realizations of wide bandwidth signals after propagation through the iono-

sphere. This technique is referred to as statistical signal generation
and relies on the properties of the solution to the parabolic wave equat-

ion under strong scattering conditions. This reliance renders statistical
signal generation less general than the MPS propagation algorithm discus-

sed in Section 2.

The basic formalism to generate statistical signal realizations
was developed by Wittwer (1979 and 1980) for the case of isotropic irregu-

larities. This section utilizes much of the initial formalism developed
at that time.

This statistical signal generation technique is based on the

solution for the two-position, two-frequency mutual coherence function
r(Ax,Aw) for spherical waves described in Section 4. In that section the
solution for r in the strong scattering limit is discussed in detail and
its Fourier transform is presented. This Fourier transform, S(K,T), is
known as the generalized power spectrum (Wittwer, 1979) and its knowledge
is a requirement for statistical signal generation. The formulation from
Section 4 for S(K,T) in the thin phase-screen limit is used in this sec-
tion as the basis of stjtistical signal generation. The thin phase-screen

approximation is necessary to provide tractable expressions of S(K,T) for
numerical evaluation. As shown in detail in the next section, the thin

phase-screen approximation is highly accurate in all cases as an approxi-
mation to the geometry of a satellite communication link.

Hence, the major limitation on the accuracy of statistical sig-
nal generation is the strong scattering assumption which provides the
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basis for the simplified solution for the two-frequency mutual coherence
function. In the case of weak scattering, the MPS methods of Section 2
may easily be applied. For strong scattering cases, often of interest in
the study of the effects of nuclear detonations on communications links,
the statistical signal generation technique is more efficient.

Although statistical signal realizations are useful only for the

case of strong scattering, their generation requires only a fraction of
the computer resources required for signal generation by wide bandwidth
MPS calculations.

Statistical signal generation is applicable to the case of elon-

gated irregularities as handled by the MPS simulation or to the more
general case of isotropic irregularities. Here the formulation is de-

veloped for both cases. Two detailed examples are presented for the case
of elongated irregularities and are compared to exact MPS calculations
that are described in Section 2.

3.2 FORMULATION

The scalar Helmholtz wave equation may be written as

(v2+ko2er(7)) E(T',w) = 0 (3-1)

where ko is the free-space wavenumber, Er is the relative permittivity and
E(F,w) is the electric field at the angular frequency w. The exp(iwt)
time dependence has been suppressed. If the permittivity, er(-), is a ran-
dom quantity with an average value plus a small, zero-mean random part,

then

6r(T) = <e(F)> (I+ A<(T)> (3-2)

Now if the dielectric permittivity fluctuations are caused by electron

density fluctuations, then

<N (T)> 2(T)
e 1- p (3-3)n cw2

c
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AN (-f) AN (-f) ~2
Ar- e e 5 (3-4)

n <N > w 2nc eW

where <Ne> is the mean electron density, nc is the critical electron
density and wp is the plasma frequency. These three quantities are
related by

2 = 47c 2r <N > (3-5)
p e e

nc =1 (3-6)
c x2ree

where re is the classical electron radius (2.82x10- 15m) and c is the
speed of light in free-space. Combining Equations 3-1 to 3-4, the scalar
Helmholtz equation for a medium subject to electron density fluctuations
combined with mean ionization is obtained

AN e> 2

v2 E + k2(1 - 1N2/ w) E = 0 (3-7)1 - W2/W2

Now k is the mean wavenumber for propagation in an ionized medium

k = < >1/2 =_ (1 - W21W2)"/2 (3-8)
c c p

where w is the radian frequency of the transmitted waveform. The mean
wavenumber k is a function of propagation distance z, but this dependence
is omitted for convenience of notation in the following.

Figure 3-1 shows the geometry of the problem where a spherical
wave originates from a transmitter located at -zt and propagates in
free-space in the positive z direction, until it is incident on a layer of
ionization irregularities of thickness L. After emerging from the layer
of irregularities at z = L, the wave then propagates in free-space to a
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receiver located in the plane z = zr. This geometry is chosen to model
transionospheric satellite communications links through ionization pro-
duced by natural causes, barium releases, or high altitude nuclear
detonations.

z -zt Transmitter

t|

z - 0
Ionized Random Slabz=L

r x-apx Receiver Plane

Figure 3-1. Geometry of transionospheric satellite communicat..is
link through a thick scattering layer.

Now make the substitution

E(T-,w) = U(-T,z,w) exp -i f k(z') dz' (3-9)
-Zt

into Equation 3-7 to obtain

AN W 2
e pV2 U+ 3U 2k 3 k2<Ne> •2

V2U+9 - 2ik .k2. U = 0 (3-10)-I 3 z 2 3z (i 2 - , W 2

where
V2 =2 3 2

_L ax2  ay2

is the transverse Laplacian.

90



LI
The complex amplitude U can vary markedly over distances no

smaller than the scale size of the electron density fluctuations Xs; that
is, the worst case variation of U in the direction of propagation can be
characterized by U- exp(-z 2/•a^ ) where Rmx> ts. Thus the second deri-
vative a2U/az 2 is of the order of U/X2  . On the other hand, the thirdmax
term of Equation 3-10 is of the order of U/x. Therefore, for X<<ma

/Xmax kmax'
or x<< the second term of Equation 3-10 may be ignored with respect to
the third term and the parabolic wave equation is obtained as:

ANe wp2

-e p

2 U - 2ik __ - k2 <Ne > U (3-11)

az I 2 m/W2

The solution to tne parabolic wave equation at the receiver
plane is U(-,zr,w). As discussed in Section 2, if the ionization irregu-
larities are infinitely elongated in the y-direction, there is no y varia-
tion. Then the multiple phase-screen propagation technique can be used to

obtain Monte Carlo "realizations" of U(xzr,w), the solution to the

parabolic wave equation.

3.2.1 Wide Bandwidth Signals

Now, if instead of a monochromatic wave, the transmitted signal
is composed of a spectrum of Fourier components, S(w), then the time-

domain signal at the receiver plane is

v(-,z ,t) f S(w) U(0,Z rw) ei( e)i•Wtdw (3-12)
rT 2 r -0r

where
z r

e(w,) : - J k(z') dz'

t

Zr 1/2
-W f (1 - W2(z')/wl2 dz' (3-13)

c z+p
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The propagation of wide bandwidth, modulated waveforms is of
interest in this work. Thus let the real transmitted waveform be
expressed as

s(t) = Re m(t)eO0

1 iwt 1-i ot

im(t)e 0 it _ m*(t)e 0 (3-14)2 2

where wo is the carrier angular frequency and m(t) is the modulation

waveform. For a pseudo-noise (PN) code, m(t) consists of a long sequence
of pseudo-random polarity changes (binary PSK-modulated signal). The
frequency-domain representation of the transmitted waveform is given by

S(w) f s(t)e-iWtdt

- m(t)e o dt+ I+ m*(t)e i dt
2 2

-- M(.,-W + 1M w)(3-15)
2 ot, 2 0O

wheie M(w) is the Fourier transform, ., the modulation waveform:

M(W) = f m(t)e-i~ t dt (3-16)

Combining Equations 3-12 and 3-15, the received waveform v can be

expressed as

v(•,Zr ,t) f I M(ww) Uw--Zrw) ei8(U3)dr

'_4_ f M*(-*-o 0 -,Zrw) e d1 (3-17)
T~r -00
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where

zjr
O(G) f- - f (1'- wo2/)I dz' (3-18)

c.zt p

Although the notation is changed, it is understood that the plasma
frequency top depends on z'.

Now in the first tern of Equation 3-17 expand 0(w) in a Taylor4series about rp

0+(w O~ ) +(w- )0'w +(o-w 0o) 2o"(w0 )
0(() + 0 + + . (3-19)

where the subscripted plus sign signifies the expansion about a positive
carrier frequency and the primes denote differentiation with respect to
w. From Equation 3-18

-- dz
U ( () P, (I. f (ZI (3-20)c t

o(1 ) - I J, (1 ( 2 " dz' (3-21)
c .zt

z
-J (1;-(3-22)

to0 zt

$" - (I - (3-23)
Cw-Zo 3 t
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In the second term of Equation 3-17, expand e(w) in a Taylor series about

0.(W) - 0(-W ) + ( *WV 0) 0'(-W 0) + + + ... •

2!

(-a-wo)' e "(W)
= - 0(wo) - (-W-Wd)0'(Wo) - + ... (3-24)

For notational simplicity, let 8(wo) = 0o, 0'(wo) = oo and so forth. Re-
taining the first four terms in the Taylor series, the received waveform
can be written as:

v(-,r Z,t) = 1w ) U(-6Zrw) exp{1io+iU(uw-o)+i t4dw41T f M(w-wo) w0T'od

4n__ M*(.w.wo) U(-,Zr,W) exp{-ieo-i-(-w-wo)-iwt}dw

(3-25)
where

0(v) -- V 10+ IV2o1I+ - V3o0I1 (3-26)
2 0 6

In the first integral let v = w-wo and in the second integral use the sub-
stitution v = -w-w. Then Equation 3-25 for the received waveform becomes

v(T•zrAt) = ei(W°t+°)4• J M(v) U(-6Zr,V+*o) exp{i•(v)+iv(t-td)1dv

e- .i(Wot+0o)•

+ e 4T f M*(v) U(-6,ZrV-w-o) exp{-ii( v)-iv(t-td) }dv

(3-27)
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where eo can be seen to be the total mean phase-shift (caused by disper-
sion alone) at the carrier frequency and td is the mean group time delay'
(i.e., the group delay at the carrier frequency):

Zr
e -= (1 r W -/ z2 'dz' (3-28)

"Zt

3.2.2 Total Phase Shift, Time Delay, and Doppler Frequency

For cases where the entire region between transmitter and
receiver is uniformly ionized, these two equations may be written as

8e0 = - (1 - 2/w2)1/2 (3-30)0 C

td R/Vg (3-31)

where R is the total propagation distance and Vg is the group velocity

V g = C(1 W2/2 1/2 (3-32)

For cases of interest where w2 >> 2 (otherwise the wave cannot
propagate without attenuation), and utilizing the relationship

2 = 4iCc2re<N>

the total phase shift and time delay can be written as
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2 ncreNT
00 -. R + (radians) (3-33),

td R + 2 (seconds) (3-34)

c 2

where

R z t + zr

Zr
NT = fr <Ne(Z,)> dz'

-Zt

R is the total propagation distance and NT is known as the total

electron content.

The well known Doppler shift due to range and ionization varia-
tions is

~do0
f 0

Sdop 2 dt

f cre
T + e T (3-35)

c 0

The first terms of Equations 3-33 and 3-34 are simply the free-space

phase-shift and time delay which are proportional to the total propagation
distance R. Variations in this distance with respect to time produce the
well known Doppler shift and effects of time delay. The second term of
Equations 3-33 to 3-35 represents contributions to propagation phase, time
delay and Doppler shift caused by.mean ionization. Note that increasing
total electron content (positive NT) causes positive Doppler shift and
increasing time delay. This is opposite to the effect of range variation,
where increasing time delay is associated with negative Doppler shift.
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It is evident from the parabolic wave equation, 3-10, and from
the definition of k, Equation 3-8, that

U('TZr ,) = U*(-6,zr,-u)

With this fact in mind, it is seen that the two terms of Equation 3-27 are
complex conjugates of one another so that the received signal is real, as
it should be. This waveform can be written in terms of a complex
modulation envelope,

(,zt) 1i (wmt+oo ) - i (wt+eoo)
v( ,zr,t) 2 e(-,Z r,t-td)e 0 + 1 e*(-, Zr,t td)e 0

Re Ie(C,zr,t-td)e i(w t+e°) (3-36)

where the received complex envelope is

e(T,zr) r _L f M(V) U('6,zr,VIwo)e(p{i-6(v)+ivT}dv (3-37)

Note that Equation 3-36 has the same general form as Equation 3-14 - a
wave modulated on a carrier at angular frequency wo with an additional
phase-shift and time delay as given by Equations 3-28 and 3-29.

In Equation 3-27 the received complex envelope e(p,zr,T) is
given as the integral over frequency of the Fourier transform of the
transmitted complex envelope multiplied by the solution to the parabolic
wave equation U. Since the value of the resultant received signal v is a
function of the carrier frequency wo, the wo dependence must appear
explicitly in Equation 3-37. Although the wo dependence is not explic-
itly shown in writing e(•,Zr,T), the received complex envzT,)pe does
indeed depend upon the carrier frequency as shown explicitly in Equation
3-37.
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3.2.3 Impulse Response Function

Now let us assume that the complex received electric field
e(TZr ,T) represents the response of a linear system to some input signal
M(T). Then in general one can write

e(T,zr ,) =fm(t') h(-, (3-38)

which simply states that the output signal is the convolution of the input
signal with the impulse response, m(T)*h(T). Now with the following
substitution obtained directly from Equation 3-16

M(v) f m(t')e"ltdt'

Equation 3-37 can be written as

e(-,Zr,T) 1 fm(t') fU(•,zr,'v+wo)e i-(v)e iv('t')d It' (3-39)

Now comparison of Equations 3-38 and 3-39 yields the important
result for the impulse response function

h(Cý,ZrT) 1 I U(__zvu_ )eZr V)ei'td v (3-40)

Equation 3-40 gives a direct result for the impulse response of an ionized
medinum in terms of the frequency domain solution to the parabolic wave
equation. It is apparent from Equation 3-40 that the impulse response h
does depend upon the carrier frequency wo although this dependence is
not explicitly shown in writing h.

Notice that Equation 3-40 represents a Fourier transform rela-
tionship for the impulse response function. The transform of the impulse
response function is composed of the product of two terms. One term,
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U(,zv+ ),is the solution to the parabolic wave ?quation and repre-Pr 0

sents random effects due to fluctuating plasma. The second term

iB(v)
e

is the transfer function of a smooth ionized medium and can cause pulse
dispersion. Since the two transfer functions appear in a product relation-
ship, it is convenient to separate the generation of signal structures in-
to a two step process. The first step consists of generating realizations
of the impulse response function with only fluctuating plasma effects.
The second step adds the effect of the gross ionization.

With the above thought in mind, let us consider a method to gen-
erate a realization of the impulse response function for the case where
e(v) 0. In addition, consider for the moment the generation of the im-
pulse response function for the case where there is no y-variation. This
situation corresponds to the case of elongated irregularities considered
in Section 4 and to the two-dimensional MPS propagation simulation dis-
cussed in Section 2. Now the impulse response function satisfies the
equation

h(xzrT) L wzr' v O)eivrdv (3-41)

The following initial development is limited to this ttw-dimensional case;
however we shall return to the general three-dimensional case later.

3.2.3.1 Distinction Between Time (t) and Time Delay iT)

Recall thaiu the x or T dimension corresponds to a displacement
on the receiver plane as shown in Figure 3-1. In an actual physical situa-
tion, the x-variation is converted into variation with time by effective
motion of the propagation path through the irregularities. Thus,

t V x (sec) (3-42)
eff
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where the effective velocity is a function of many system and environ-
mental parameters including wind velocities, platform velocity, plasma
velocity and propagation path geometry. This effective motion may be
caused by motion of the irregularities, by motion, of the line-of-sight
through the irregularities or by a combination of both. Note that the
time (t) variation of the fluctuations is assumed to be very slow relative
to the time (T) variation of the modulated waveform. In other words, the
bandwidth of the fluctuations is small compared to the bandwidth of the
modulation. This consideration is important since the solution to the
parabolic wave equation is obtained simultaneously at a number of frequen-
cies over the signal bandwidth. For the solution to be accurate, the
medium cannot vary over the time duration of the modulation waveform.

3.2.4 Statistics of a Realization

At this point it is useful to consider the technique discussed
in Section 2.2.4 to generate phase-screen realizations as it might be
applied to generate realizations of the complex electric field.

First a pseudo-random realization of the Fourier transform of
the electric field is chosen as

E(mAK) = rm(S(m&K)L/2w)1/ 2  (3-43)

where E is a realization of the Fourier transform of the electric field, S
is the desired power spectral density (PSD), L is the length of the grid
and rm is a complex Gaussian random variable such that

<r mr> = 6nm (3-44)

The electric field itself is then obtained by taking the discrete Fourier
transform of Equation 3-43

N-i1 i21tm/N(
E(tAx) = I E(mAK)ei AK x 0,...N-1 (3-45)

m=O
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The most important properties of the electric field are immedi-
ately evident from the preceding brief discussion. First, since the
electric field is a linear combination of a number of Gaussian variates,
both its real and imaginary parts possess Gaussian probabilfty distribu-
tions. Thus the realization of received signal amplitude is the square
root of the sun of the squares of the inphase and quadraturephase parts,
and

J(Real E)2 + (Imaginary E)2}1/2

possesses a Rayleigh probability distribution.

In the following, a formulation is developed to generate real-
izations of the received electric field which are restricted to possess
Rayleigh amplitude distributions. Fortunately this limitation is not at
all restrictive for the case of a nuclear disturbance since large spatial
regions can experience Rayleigh fading statistics.

Finally it is evident from Equations 3-43 and 3-44 that the
electric field power spectrum has the form

<E(mAK) E*(nAK)> - 6mn S(m&K) (3-46)

which is a requirement if the electric field is to be stationary
(Tatarskii, 1971). Thus the resulting autocorrelation function generated
by the method described in Section 2.2.4 is dependent only on the distance
between measurement points.

3.3 IMPULSE RESPONSE FUNCTION GENERATION

In this section techniques are developed to generate realiza-
tions of the impulse response function h(x,Zr,T) defined in Section
3.2.3. Once this function is available, Equation 3-38 or its equivalent
may be applied to obtain a realization of the complex received electric
field. It is shown here that it is possible to generate the Fourier
transform of the impulse response function U(x,Zr,v) in essentially the
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same manner as realizations of the phase are generated. Note that the
independent variable pairs V-T and x-K are used to unambiguously denote
Fourier transform pairs.

3.3.1 Realizations of the Parabolic Wave Equation Solution

In this section a realization of the impulse response function
is obtained by first generating a realization of its Fourier transform
U(x,v). Thus given the Fourier transform pair,

U(x,v) = f h(x,.r)e'iVTdT 
(3-47)

h(x,T) = f" U(x,v)eiV~dv (3-48)
2 -w

first generate a realization of U(xv) as illustrated in the following.
Then take the transform to obtain a realization of the impulse response
function h(x,T). Note that Equation 3-48 is Equation 3-41 with the zr
and wo dependence removed for convenience. Both of these dependencies
play an important role in the results but are unnecessary complications to
the formulation.

Now U(x,v) can be written as the Fourier transform

U(x,v) -f fh(K,r)eiKxe'ivTdKdT (3-49)

where h(K,T) is recognized as the Fourier transform of the impulse

response function with respect to x. h(K,T) is not the impulse response
function which is denoted as h(x,T). In the discrete case Equation 3-49
may be written

N-i M-1
U(xAX,pAv) = m h(m&K,sAT) eixAKAx e-iPsAVAT AKAT

MUO sUO

-0,0...N-1; p=O,...M-1 (3-50)
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where-N, discrete points are used to represent a total distance of L so
that the point spacing Ax = L/N. By the Nyquist sampling, theorem, the
minimum spatial frequency is AQ = 1/L. The minimum spatial radian
frequency is then 2w/L. Similarly T is the total time duration of the M
samples used to represent the delay space functional dependence. Thus the
delay increment it Ar = T/M. By the Nyquist sampling theorem the minimum

frequency is Af = l/T, or the minimum radian frequency is 27/T. The
total, two-sided spatial bandwidth is Bs = 1/Ax, and the total,
two-sided delay bandwidth is Bd = i/AT. For later convenience also
define the total radian bandwidth as Bv = 2,rBd. With the
substitutions just discussed Equation 3-50 becomes

N-i M-1
U(xAx,pAv) = s h(mK,sA-r) e12f/N e21rps/M AKAT

M=O s=0
1=0,...N-1; p=O,...M-1 (3-51)

Now choose as a realization of the Fourier transform the quantity

[LB 1/2
h(mAK,sAT) =_L2L S(m&K,sAT) rms (3-52)

where S(K,T) is the generalized power spectrum given by either Equation
4-97 or 4-99 in Section 4. rms is a complex random variable such that

rms = (glm+2m)(gls+2s) (3-53)

where the g's are independent, Gaussian random variables with zero mean
and unity variance. With this definition for the random quantity rms it
is easy to show that

<rmsrnr> = 6mnrsr (3-54)

and
<rms> = 0 (3-55)
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Now it must be shown that the choice for the Fourier transform,
Equation 3-52, is correct, Let us calculate the autoco:-relation function
of U(x,v) and show that it is indeed the two-frequency mutual coherence
function. The continuous autocorrelation function of U(x,v) is given as

B u(x,v) <.U(x'+x,v'+v)U*(x',V')>

-1 L Bv/2
f fo/ u(x'+x,v'+v)u*(x',v')dx'dv' (3-56)-•v -BV/2

where ergodicity is assumed and ensemble averages are replaced by averages
over distance and frequency. Now the preceding equation may be written
discretely as

Bu(x,v) BU(xAx,pAv)

1 N-1 M-11- 1 1 U(kAx+zAx,qA\+pAv) U*(kAx,qAv) AXAV
LBV k=O q=O

FV

A =0, .... N-1; p=O,...M-I (3-57)

From Equation 3-51 the Fourier transform of U may be substituted into
Equation 3-57 to obtain

N-1 M-1 N-i M-1 N-1 M-1

LB k=o q=- mo s=O n=O r=oV

x h(mAK,sAT) exp{i2f(k+x)m/N- i27r(q+p)s/M}

x h*(nAK,rA¶) exp{-i2fkn/N + i2%qr/M} AxAV(&KAr) 2

x=0,...N-1; p=O,...M-1 (3-58)
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Now substitute the realization of the Fourier transform given by Equation
3-52 into Equation 3-58 to obtain

N-1 M-1 N-i M-1 N-1 M-1

(2r)2  k=O q=O m=O s=O n=O r=O

{S(mAK,sAT)S*(nAKrAT)}1/2 rmsr*nr

x exp{i21T(k+x)ni/N - i2n(q+p)s/M}

x exp{-i2rkn/N + i2rqr/M} AxAv(&KAr) 2  (3-59)

Now since

N-1 i2-ikm/N -i27kn/N N6 (3-60)
eO e mn

k=Q m
and

M-1e-I ei2.fqs/M e +i2.fqr/M = Msr (3-61)

q=O

Equation 3-59 may easily be reduced to

NMAxAv N-1 M-1

S(2T) 2 m=O s=O

x Irms? 2 exp{i2wmun/N - i2irps/M} (.KAT) 2

N-i M-1
= Z S(mAK,sAT) Irmsl 2 exp{i27rm/N - i21tps/M} AKAr

m=O s=O

(3-62)

It is apparent that a Fourier transform relationship exists between the
correlation function Bu and the function S(mAK,sA-)irms1 2 . Thus the
power spectrum of the single generated realization U(XAx,pAv) is

S(mAK,sAT) Irms2
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where S(K,t) is the desired generalized power spectrum discussed in
Section 4 of this report.

It is apparent that each of the Fourier components of the power
spectrum is independent of Fourier components at other values of K and T
because of the choice of the random number rms. Because of this delta
correlation property of the power spectrum, the autocorrelation function
Bh is only a function of Ax and Av as it should be in accordance with
the description of the two-position, two-frequency mutual coherence func-

tion, r, given in Section 4. Since the random numbers rms are Gaussian
variates, JrTss2 is a chi-squared variate with two degrees of freedom.
Since <lrmsl > = 1 the mean value of the power spectrum is the desired
value. In other words, each realization of U(XAx,pAv) is dependent upon a
sequence of random numbers, rms, and thus has a spectrum which is not
identically equal to the desired spectrum. However, the average PSD of a
large number of such realizations is given as

Avg S(mAK,sAt)lrmsI 2} = S(m&K,sAt) (3-63)

which is exactly the result desired.

The average autocorrelation function determined by averaging
over a number of numerically generated realizations is obtained by taking
the average'of Equation 3-62

N-I M-1
Avg {Bu(xAx,pAv)} = I S(mAK,sAr) exp{i2iffn/N-i2lfps/M}AKAt

m=O s=O

(3-64)
This equation may be rewritten in its continuous form as

Avg{%(x,v)1 f IS(Kr) eiKX e-lvr dKdr = r(x,v) (3-65)

which is identical to Equations 4-84 or 4-87 and proves that the formula
given in Equation 3-52 for the Fourier transform of a single realization
is indeed correct as claimed.
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At this point it has been proven that Equations 3-51 and 3-52
may be used to generate a realization of the solution U(x,v) to the para-
bolic wave equation. This realization has r(x,v) as its autocorrelation
function and S(K,r), the generalized power spectrum, as the Fourier trans-
form of r. In order to facilitate numerical generation of realizations,
the formulation for S(K,T) has been specialized with little loss of gener-
ality to the case of scattering by a thin phase-screen.

The equations for S(K,T) are given in Section 4 for two cases.
Equation 4-97 is valid for the case of irregularities that are infinitely
elongated perpendicular to the direction of propagation. Equation 4-99 is
valid for isotropic irregularities. Appendix A is devoted to numerical
evaluation of the two equations and shows a number of plots of S(K,¶) for
an interesting selection of parameters.

The specialization to the thin phase-screen case mentioned above
is discussed in detail in Section 4 where results are presented for both

* thick and thin layers to show the effect of layer thickness on the S4

scintillation index, the mean time delay and the time delay jitter. In
general, for satellite communication links through ionospheric disturb-
ances, the thin phase-screen approximation is quite accurate and enjoys
a distinct advantage in usefulness over the thick layer solution.

3.3.2 Realizations of the Impulse Response Function

At this point a method has been described to generate discrete
realizations of U(x,v), the solution to the parabolic wave equation,
directly from the computed two-frequency mutual coherence function. In
order to generate realizations of the impulse response function h(x,r) it
is necessary to apply the Fourier transform relationships given by
Equations 3-47 and 3-48. In the discrete case, Equation 3-48 becomes

1 M-1 i1p/

h(XAx,sAT) = I-- Z U( Rx,pAv) ei 2 pS/MAv (3-66)
2n p=O

x=O,...N-1; s=O,...M-1
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Substitution of Equation 3-52 into Equation 3-66 yields

N-1 M-1 M-1 )/M

h=-- ,SZ ) h(mAK,rA) ei 2 m/N ei 2 rp(s-r AKATAv
27 m=o r=O p-o

(3-67)S•=v O, .. N-1; s=O,...M-1

but since

M-1
M ei2np(s-r)/M = MSsr (3-68)

p=O

Equation 3-67 reduces to

M N-1 *2'N
h(XAx,sAT) = I h(mAK,sAT) ei2m/ AKATAv

m=O

L=0,...N-1; s=O,...M-1 (3-69)

Now use Equation 3-52 to specify a random realization of the Fourier
transform and simplify by using the relationships for AK, AT, and Av to
obtain

N-1
h(XAx,sAT) = (B/L)1/2  I [S(mAK,sAT) ]1/2 rmse 2 i/N(3-70)

m=0

X=09,...N-1; s=O,...M-1

This equation is the final statement of the method to generate

realizations of the impulse response function after transionospheric prop-
agation. Note the interesting property observed here that the values of

the impulse response function are uncorrelated (or delta-correlated) in
delay. This property occurs because the random variable rms obeys the
correlation relationship specified by Equation 3-54.

Again it is quite important to note that the impulse response
function generated in this manner is a complex Gaussian variate whose
amplitude {h(x,T)h*(x,r)}1/2 follows a Rayleigh probability distribution
function. The importance of this fact is illustrated in the following
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section where two examples of statistically generated signals are given

and compared to multiple phase-screen calculations.

3.4 RAYLEIGH COMPONENT OF THE -CONPOSITE SIGNAL

This section describes the steps which must be taken to generate
statistical realizations of the impulse response function. Several exam-

ples are discussed and results compared to MPS results presented in
Section 2 of this report.

One very important problem remains to be resolved before statis-
tical signal realizations can be generated. The problem is caused by the
fact, discussed in the previous section, that the chcice of Gaussian ran-

dom variables results in Rayleigh amplitude statistics for the generated
signal. The reason for the problem is obvious - the analytically calcu-
lated generalized power spectrum S(K,T) includes all scattering effects,
but the limitation imposed by requiring that the generated signal have
Rayleigh statistics effectively requires the user to generate only the
Rayleigh portion of the signal.

The solution to this problem is pragmatic. Arbitrarily divide
the received signal into two disjoint parts. One part, called the disper-
sive component, represents the effects of large phase structure on the
signal. The other signal component, called the Rayleigh signal component,
is that part of the received signal which obeys Rayleigh statistics and

represents severe diffractive or angular scattering effects. These two
signal components have some similarities to the focus and scattering

signal components upon which Fremouw's (Fremouw, et al., 1978) two-com-
ponent signal statistical model is based.

Now for the case of a phase power spectrum which represents a
range of scale sizes, the scattering processes are well understood. Large
scale sizes, such that the focal length of the irregularities is greater
than the propagation distance, cause large phase effects but cause little
amplitude scintillation. This is another way of saying that larger scale
sizes cause dispersion and not diffraction. Small scale sizes, whose
focal lengths are less than the propagation distance, contribute to the S4
scintillation index because these small sizes are responsible for diffrac-
tion or angular scattering effects.
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Now it is also well known (Fante, 1975) that for saturated scin-
tillation, the signal amplitude statistics are Rayleigh and the S4 scin-
tillation index is tnus unity. It is also known that weak scattering
predictions of the scintillation index in either the Born approximation or
the Rytov approximation give accurate results for S4 < 0.5 (Crane, 1977).

Now assume for the moment that saturated, stron5 scattering
occurs for S4 > 0.5. That is, with the heuristic assumption that for
S4 > 0.5, the amplitude statistics are basically Rayleigh and the scintil-
lation index is effectively unity, the S4 scintillation index can be
accurately used to separate the Rayleigh signal component from the disper-
sive component. That is, since the scintillation index can be expressed
as the integral over wavenumber of the phase PSD times a Fresnel filter
fantor, the integral may be used to define a scale size which separates
dispersive effects from diffractive effects.

In this section the discussion is limited to a K-3 one-dimen-
sional phase PSD. The integral expression for S is used to define an
outer scale size for the Rayleigh signal component, LR, which is in turn
used to define a new phase PSD with phase standard deviation OR. The
Rayleigh phase standard deviation, aoR, and the Rayleigh outer scale
size, LR, are then used to define the generalized power spectrum for
purposes of statistical signal generation. The effect of this ad hoc
procedure is to generate only that portion of the signal that obeys

'V Rayleigh statistics. The rest of this subsection describes the details
involved in obtaining the effective PSD for the Rayleigh component of the
received signal.

In the thin phase-screen approximation (Salpeter, 1967) the S4
scintillation index is given as an integral over wavenumber by

2 00
S2 4 f S (K) sin2 (K2Z*/2k) dK (3-71)

S4  0 4 *x si 2  x d
(elongated irregularities)

2 4J (KK sin 2 [(K2+K2)z*/2k] dK dK (3-72)

(isotropic irregularities)
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where

1=1 1 (3-73)

Z* Zt zr

The geometry is shown in Figure 3-1 where the layer thickness L
is taken as zero in the thin phase-screen limit. The transmitter emits a
spherical wave which propagates a distance zt in free-space until it
penetrates the scattering layer. The wave then propagates a distance zr
to the receiver. The phase power spectra are given as

S€(Kx) = o0 r[(n-2)/2]Lo
S KX (3-74)

S€3r[(n-3)/2] (1+K2L 2)(n-2)/2

(elongated irregularities)
,• o02 r[(n-1)/2 ]Lo

S 0(Kx,K)= 0 (-5S(xKy) = r[(n-3)/2] [I+(K2+K2)L21(n-l)/ 2  (375)
"x y'o0

(isotropic irregularities)

where r is the gamma function. It is seen that these two PSD follow the
"relationship (Rufenach, 1975)

A
S(Kx) 7y)dKy

(KxK (3-76)

so that in both cases the one-dimensional phase PSO has the desired power
law form K-n+2.

3.4.1 Rayleigh Signal Component for Elongated Irregularities

Now in the case of elongated irregularities, the substitution

V = K2 z*/2k (3-77)
x

may be applied, and the integral expression Equation 3-71 may be written

as

111---

S. .. 'v.•>,



2 8 j2- a2 r[(n-2)/2] sin2 (V2)dVSS4 (3-78)
r [(n-3)/2]E1/2 f (1*2V 2/E) (n-2) /2

0

where

= z*/kL2 = Xz*/2.Lo2  (3-79)
0 0O

Now define the value V' such that the scintillation index is 0.5
V'

-2 oa2 r[(n-2)/2] sin2 (V2 )dV

(0.5)2 E r[(n-3)/2 /2 (+2V2/E)(n-2)/2

0

V' is the cutoff value chosen so that wavenumbers smaller than F2 kV'/z*
contribute a value of 0.5 to the scintillation index in the weak scatter
approximation. Since this weak scattering expression is valid for
S4 < 0.5 (Crane, 1977), V' is a well defined quantity. Now define the
outer scale cutoff value, LR, such that scale sizes larger than or equal
to LR contribute a value of 0.5 to the S4 integration, or

LR = (z*/2kV')1/2 = (xz*/4nVt')1/2 (3-81)

Equation 3-81 can be rewritten as

LR/Lo = (Xz*/4.LoV,)1/2 = (E/2V,)1/2 (3-82)
R 0

Hence LR is the scale size which separates large scale sizes from the
small scale sizes that cause the major scintillation effects. Now it is
apparent that the value of LR/Lo is dependent upon the spectral index
of the one-dimensional phase fluctuations, 2-n, the outer scale, Lo, the
parameter E and the phase standard deviation, . In the case of inter-
est here the one-dimensional phase PSD has a spectral index of -3, so n is
taken as 5.

Figure 3-2 shows L-R/Lo as a function of awith E treated
"parametrically. Values of E ranging from 10-6 to 1 are shown. For a con-
stant value of E, there is a minimum value of the phase standard deviation
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below which no solution is found for LR/LA. Values of c below the minimum
value correspond to the situation where all irregularittes are close to
the phase-screen and cause only dispersive effects. Recall that the focal
length for an irregularity of strength *o is

F = 2/Ao (3-83)

so that

F/z* =rL2/Z*o (3-84)
0 0

So as or equivalently €o increases for a given xz*/Lo2 or { value,
the focal length becomes smaller than the effective propagation distance.
Thus as a, increases, more and more irregularities contribute to angular
scattering and thus add contributions to the value of S4.

As a, continues to increase for a fixed { = Xz*/2,Lo 2, the

focal distance for more and more of the ionization irregularities becomes
smaller than the effective propagation distance z*. Eventually, for
large enough, all the ionization scale sizes contribute to the S4 calcula-
tion so that the received signal is said to have no dispersive signal com-
ponent. In that case all the original phase irregularities contribute to
the Rayleigh signal component and LR = Lo.

Now that a scale size LR has been chosen to characterize those

sizes which contribute to the Rayleigh part of the scattered signal, let
us choose an entire phase PSD corresponding to the Rayleigh signal compon-

ent with outer scale size LR. For this Rayleigh PSD to match the origi-
nal PSD at small scale sizes, as it should, the two PSD's must have
identical limits for Kx large. In the limit for Kx large

,~~ S0K) ,L 2-n 3-n

S(K (Kx o n 2K-o Kx Lo (3-85)
(K L)n-2  ' 0

which must be identical to the Rayleigh signal component PSD. Now for the
case of a K" one-dimensional phase PSD, n = 5 in Equation 3-74 and
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2L- C2 L2 (3-86)

Thus the choice

= OLR/Lo (3-87)

yields a new Rayleigh signal PSD with scale size dependence identical to
the original phase PSD scale size dependence at small scale sizes (large K
values).

With the aid of Equation 3-87 it is possible to place the value
of the phase standard deviation of the Rayleigh signal component, OcR, on
the curves shown in Figure 3-2. Figure 3-2 can also be cast into the form
of Figure 3-3 which shows the resulting Rayleigh phase standr'rd deviation,
OCR, as a function of the original phase standard deviation, a•. For a
fixed value of the parameter g there is a minimum value of' . below which
angular scattering is negligible and S• does not reach the vilue of 0.5.
For this case no Rayleigh signal component is observed. As a, increases
with constant g the value of

F/z* = vL2/XZ*a*0

decreases so that all scale sizes eventually contribute to the Rayleigh
signal component and there is no dispersive component. For that case the
Rayleigh spectrum is identical to the original spectrum with

R = and LR = Lo.

This case corresponds to the upper portion of the plot where OaR would
be larger than 0, if any curves appeared there.

Returning to Figure 3-2 it is seen that for a constant value of
g, there is a minimum value of a, below which S4 does not reach 0.5.
These minimum values appear as vertical lines on the figure. In this case
of weak scattering there is no Rayleigh signal component. For intermediate
values of a• larger than the minimum, there is both a dispersive signal
component and a Rayleigh signal component; here LR and may be read
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from the figure. For still larger a, values on any constant E curve,
angular scattering effects dominate and the Rayleigh signal may be gener-
ated directly from the original values of L0 and with no dispersive
signal component.

As discussed in Section 4.3, an important signal parameter which
characterizes whether dispersive or diffractive effects dominate is
defined as

wb= O/OYcwcoh (-8

For greater than unity angular scattering or diffraction effects domi-
nate the signal structure. For a less than unity dispersive effects pre-
dominate. Therefore, it is necessary that the value of a for the Rayleigh
signal component be greater than unity or else the heuristic basis for the
choice of the Rayleigh PSD loses merit. For a K3 one-dimensional phase
PSD the value of a is given in Equation 4-106 as

xn(Lo /Xi) Xz* o€
0 =(3-89)

27rL
2

0

Now for the Rayleigh signal component

in(LR/AR) X7**O R
0R~ 2=L (3-90)

Now Equation 3-87 may be used in Equation 3-90 to obtain

a C

¢n(L /1 (3-91)

Since results already exist for 0cR as a function of a€ with g as a
parameter it is easy to compute am as a function of with • taken
parametrically.
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Figure 3-4 shows the value of cR, for the Rayleigh signal compo-
nent, as a function of a, for the composite signal for values of the
parameter c ranging from 10-6 to 100. The ratio of outer scale to inner
scale LR/XR is taken as 100 in the figure; this value is a reasonable
minimum. Values of the phase standard deviation for the Rayleigh signal
component, 00R, are also shown parametrically ranging from 1 to 1000 radi-
ans. As can be seen in the figure, the minimum value of aR is 2.5 for
aOR greater than 1.0 radian. Since values of less than 1.0 radian are
prohibited (see the discussion of Figure 3-3), tle value of 2.5 is a true
minimum for aR.

The fact that QR for the Rayleigh signal component is always
greater than unity is important for two reasons. The first reason, already
discussed, is that the Rayleigh signal component is thus characterized by
angular scattering or diffractive effects. The second reason is that the
time delay jitter for the Rayleigh signal component is then independent of
a and is simply related to the coherence bandwidth, wcoh, defined in
Section 4.1.5.2.

From Equation 4-135 the time delay jitter for the composite
signal is given by

2+ 2  (3-92)

Now it will be shown that the time delay jitter is always inversely pro-
portional to the coherence bandwidth if the signal has a Rayleigh com-
ponent. Furthermore, if the signal has a Rayleigh component, the value of
the coherence bandwidth is the same as it is for the composite signal.

Now if a is large, diffraction is the dominant effect and the
time delay jitter becomes

T; (3-93)T /2 'coh
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If c is small, dispersive effects dominate and the Rayleigh
signal component must be generated to isolate the diffractive processes.
If the Rayleigh signal component exists, then aR is greater than unity
and

0TR ~ 1(3-94)
i'2 wcohR

where the additional R subscripts are used to denote the Rayleigh signal
component.

Now for a K-3 one-dimensional phase PSD, the value of Wcoh is
given by Equation 4-74

2 rw L2

o 00 (3-95)wcoh x( X)ZS£n( Lo/Zi )•,z* o•

where Ao and A2 are taken from Equations 4-44 and 4-45. Equation 3-95
is valid for the composite signal. Now since, from Equation 3-87

LR/OaR = (3-96)

the value of the coherence bandwidth for the Rayleigh signal component is
approximately identical to the value of the coherence bandwidth for the
composite signal,

WcohR = (coh

since the only difference is the logarithmic term which will have little
effect.

At this point it is useful to consider the important signal
parameter to defined in Equation 4-73 as the signal decorrelation dis-
tance. For a K-3 one-dimensional phase PSD the values of Ao and A2 are
given by Equations 4-44 and 4-45 and the value of the signal decorrelation

distance is given by
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2L22 2Lo r Z+t) (3-97)
o in(L /£i) 2z2

0 **t

The value of the signal decorrelation distance for the Rayleigh signal
component may be written as

2 2(z +zt) 2

2oR2 (3-98)
oR n( LR/ hi) 0,RZt

Equation 3-96 may be substituted into Equation 3-98 with the result that

o o(3-99)
~oR =0

Exact equality is not obtained because of the differences in the logarithm
term. This important result states that, if a Rayleigh signal component
exists, itb signal decorrelation distance is approximately equal to the
signal decorrelation distance of the original composite signal.

3.4.2 Rayleigh Signal Zomponent for Isotropic Irregularities

In the case of isotropic irregularities the transformations

K2  K2 + K2  (3-100)
S x y

and

V = K2 Z*/2k (3-101)

may be introduced into Equation 3-72 and the identical definition of V1

established as was used in the case of elongated irregularities so that

( 8r[(n-1)/2j sin 2(V)dV(0.5)2 =(3-102)
r[(n-3)/2 ]E l2V (n-l)/2
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defines V'. The calculation of the Rayleigh signal component parameters
UýR, LR and aR may be accomplished with the same procedures used in
the elongated irregularity case.

Figures 3-5, 3-6, and 3-7 show the results for LR/LO, d$R and&

as functions of the value of the phase standard deviation a of the com-
posite signal and various values of the parameter xZ*/2Lo02 . As can be
seen the general behavior of these results is similar to the results for
the case of elongated irregularities.

3.5 EXAMPLES OF STATISTICALLY GENERATED SIGNALS

3.5.1 Exmple 1: Diffraction Important

In this section examples of two statistically generated signals
are presented and the results compared to the MPS results presented in
Section 2. These two examples present interesting tests of the signal
generation algorithms since one case is dominated by diffractive effects
and the other is dominated by dispersive effects.

First consider the MPS calculation described in detail in
Section 2.6. In this example the carrier frequency is 2.25 GHz, the phase
standard deviation is 350 radians, the outer scale is 1 km and the inner
scale is 10 m. The incident wave is plane (infinite zt) and the scatjter-
ing layer is 1000 km thick with an additional free-space propagation
distance of 1000 km from the exit of the layer to the receiver plane.

This MPS calculation is applicable only to a two-dimensional geometry and
thus corresponds to the theoretical development for the infinitely elon-

gated irregularity case.

Now since the computed values of the generalized power spectrum
S(K,¶) have been specialized to the thin phase-screen case for conveni-
ence, it is necessary to find the thin phase-screen geometry equivalent to
the MPS geometry just described. For the case at hand the single thin
phase-screen is centered in the scattering layer and is located a distance
of 1500 km from the receiver plane. The value of xzr/2•Lo 2 is then
0.031831. Now using the results shown in Figures 3-2 and 3-3 it is seen
that for the Rayleigh signal component
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194 rad

LR -564 m

Now in order to obtain results for comparison to the MPS results
presented in Section 2.6, it is convenient to numerically generate the
solution to the parabolic wave equation U(x,zr,v+wo) by-taking the
Fourier transform of the impulse response function

U(XZr~v+o) =f h(x,zr,T)e'ivTdT (3-103)

r.Ao

Equivalently U may be directly obtained from Equation 3-51. Equation 3-103
is Identical to Equation 3-47 where the zr and wo dependence are included
for completeness. Note that the impulse response function h is also
dependent upon the carrier frequency. Realizations of the impulse response
are obtained in discrete form using Equation 3-70. The generalized power
spectrum S(K,¶) is given for the case of elongated irregularities by

S(K,¶) = wcohRt°R exp 1K 2t 2  1 (2[ K -1K212 (3-104)
3/oR2 4 oR A cohRjI

where the parameters aR, koR, and wcohR are given by Equations 4-106,
4-73, and 4-74, respectively and of course refer to the Rayleigh component
of the received signal which is the only component one can generate with
this technique. Ao and A2 which are required in Equations 4-73 and 4-74
may be obtained from Equations 4-44 and 4-45. The carrier frequency
dependence of the impulse response function is evident in the expressions
for the parameters a, wcoh, and 1o.

The Fourier transform given by Equation 3-103 may be implemented
discretely by using Equations 3-51 and 3-52 from the earlier development.
In order to directly compare to the MPS case, 32 discrete frequencies are
used over a bandwidth of 4.096 MHz. The same number (32) of delay cells
are used with delay spacing
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and thus a total time-delay interval

T = 32 AT = 7.812 x 10-6 sec

Vausof the important Rayleigh signal parameters wcohR and aR are given
K, in the plane wave, thin phase-screen case as

aR wo/ORulcohR =91.7

To perform the integration over T which is required in Equation 3-51 or
Equation 3-103, the variable T ranged discretely from -2.44X10-7 to
7.32xl10 6 sec so that values of w cohR T ranged from -0.19 to 5.82. As can
be seen from Figure 3-8 which shows the normalized power impulse response
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function defined in Sectioh 4.3, the range of non-zero values of the power
impulse response is about

0 < wcoh T<3

for a = 100. In the case at hand a is close to 100 and so the range of

values taken in the numerical calculation includes all important ¶ values.

Another way to check the accuracy of the numerical calculation

is to form the integral

N-1 M-1
Z S(mAK,sAr) AKAT

m=0 s=0

This integral is the discrete equivalent of

f S(K,T)dKdT

and should be equal to unity since the continuous integral is equal to
r(AX=O,Af=0) according to Equation 4-84 or 4-87. This important quantity
is always formed and checked in every statistical signal generation.

For this example there are 1024 cells in the x-direction, with a
total length of 208.33 m and a spacing of 0.20345 m which is precisely
three times the grid spacing used in the MPS calculation.

In order to obtain results for statistical averaging purposes,
the statistical signal generation algorithm is performed five times with

five different random number sequences. As described above, for each
individual signal generation calculation, 32 frequencies are generated

with 1024 x-points for each frequency. Ihis signal is referred to as a
single statistical realization and is similar to a MPS frequency selective

signal realization.

Figures 3-9 to 3-14 show a comparison of the mutual coherence
function r(Ax,Af) for a single statistical realization versus the strong

scattering theory described in Section 4. Figure 3-9 shows the amplitude
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Figure 3-9. Comparison of magnitude of r, single statistical
realization versus theory.

1.5-

1.0

THEORY

~0.A AA

0 0.5 AA A A A
A A

•~~ -oA• A AA

-0.5-

- 1.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
DELTA FREQUENCY (MHZ)

Figure 3-10. Comparison of phase of r, single statistical realization
versus theory, Ax = 0.
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Figure 3-11. Comparison of phase of r, single statistical realization
versus theory, ax = 0.61 m.
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Figure 3-12. Comparison of phase of r, single statistical realization
versus theory, Ax = 1.22 m.
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of r corresponding to values of Ax of 0.0, 0.61 m, 1.22 m, 1.83 m and 2.44
m versus theory. These values of Ax are chosen to correspond to the MPS
values presented in Figures 2-26 to 2-31. The theoretical results pre-
sented here are similar to those presented in Figures 2-26 to 2-31 except
that here the thin phase-screen theoretical limit is taken. It is seen
that the difference in the phase of r between the thick layer theory and
the thin phase-screen theory is simply a term that is linearly proportion-
al to the frequency deviation from the carrier frequency. In Section 4
the received time-domain signal is shown to be related to the Fourier
transform of r so that this phase term that is proportional to frequency
yields only an additional time delay. As can be seen in Figure 3-9 the
agreement between statistical results and theory is good but is somewhat
worse than the agreement between the MPS results and theory.

Figures 3-10 to 3-14 compare the phase of r computed from the
single statistical realization versus the thin phase-screen theory.
Agreement is very good in the most important region close to zero Af where
the power in the spectrum of the modulation waveform is concentrated, but
elsewhere the phase of r diverges somewhat from the analytic results.

Figures 3-15 to 3-20 compare thq value of r obtained by averag-
ing the results of five independent statistical realizations to the ana-
lytic, thin phase-screen results. It is apparent in Figure 3-15 that the
average amplitude of r compares quite well to the theory and, in fact,
does better than the MPS calculation at matching the theoretical thin
phase-screen results. The agreement with theory is quite good for the
entire range of Af for all five of the &x values shown.

Figures 3-16 to 3-20 show a comparison of the phase of r for the
average of five statistical realizations versus the analytic thin phase-
screen value. As expected from the averaging process, the variations in
the phase are reduced in comparison to the variations observed for the

case of a single realization. In all five figures the average statistical
phase and the analytic phase agree quite well near zero Af but disaqree
somewhat for 0Af1 greater than about 1 MHz. This minor disagreement -,I the
phase of r does not appear to be important to the resulting time-domain
signals to be presented next. The most important aspect of these compari-
sons is the good agreement between numerical results and theory near zero
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Figure 3-15. Comparison of applitude of r, average of five statisti-
cal realizations versus theory.
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Figure 3-16. Comparison of phase of r, average of five statistical
realizations versus theory, Ax = 0.
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Af. This region is the most critical since zero Af corresponds to the
carrier frequency where most of the energy in the modulation waveform is
concentrated.

Figure 3-21 shows an example of the envelope of the received
triangular waveform as determined by the 'statistical signal generation
technique. The received complex envelope is given by

e(XZr,T) = L fM(v)U(xzr ,v~wo)eiVTdv (3-105.)

where M(v) is the Fourier transform of the transmitted pulse

1Tck f

M(f) = (3-106)

0 Ifl > 1
Tc

where v=2df and Tc is 488.3 nsec, twice the duration of the transmitted
triangular pulse. U(x,zr,v+wo) is determined from the discrete form

of Equation 3-103 where the impulse response function h(x,zr,¶) is the
statistically generated impulse response function obtained using
Equation 3-70. In Figure 3-21 samples of the amplitude le(x,zr,T)I are
shown for 101 values of x separated in distance by 0.61 m, the MPS grid
interval. Thus Figure 3-21 is directly comparable to Figure 2-32 in
Section 2. The time domain results shown in these two figures are both

independent realizations of a stochastic process and hence cannot be
identical. However, the similarity in overall structure indicates that
the 4atistically generated realization is an adequate approximation to
the exact MPS calculation.

Figure 3-22 shows the average pulse shape of the received time
domain signal which is obtained by averaging all the 5120 realizations of

le(x,zr,T)I generated in five runs with 1024 x-samples per run. This
average pulse shape is found to be quite similar to the result for the MPS
calculation shown in Figure 2-33. The overall appearance of the two pulse
shapes is very similar with a noticeable concentration of power at small
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Figure 3-21. Envelope of the received time-domain waveform--
statistical signal realization.
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Figure 3-22. Average received time-domain envelope--statistical
signal realization.
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delays for the MPS case as compared to a slightly more spread out situa-
tion for the statistical signal generator case. For the MPS case showný in
Figure 2-33, the mean time delay, <T>, is 1.1 chips and the time delay

jitter, a., is 1.4 chips. For the statistical signal shown in Figure
3-22 the mean time delay is 1.2 chips and the time delay jitter is 1.7
chips. In both cases a chip is the unit of time Tc here equal to 488.3
nsec. The theoretical result in the thin phase-screen case is 1.3 chips
for the mean time delay and 1.8 chips for the time delay jitter.

Thus rather good agreement is obtained for the MPS results and

the statistical signal results when compared to theory. One should keep
in mind that the MPS calculation is a direct solution to the parabolic

wave equation and involves no approximations. The theoretical calculation
requires a number of approximations-to obtain solutions for average quan-
tities and hence suffers in accuracy relative to the very general MPS

calculation. The theoretical calculation includes both dispersion and
diffraction effects but the statistical signal generation technique is
only applicable to the diffraction effects. The rather good agreement
shown in this example indicates that the heuristic method devised to
calculate the Rayleigh or diffraction part of the composite signal is
adequate to the task.

3.5.2 Example 2: Focusing Important

As another example of statistical signal generation consider a

case where large scale structure leads to focusing and to other effects of

large phase irregularities. As in the previous example the MPS results
are compared to the statistically generated results.

The scattering geometry is identical to that of the previous

example. A plane wave propagates through a 1000 km thick scattering layer
and then propagates in free-space an additional 1000 km to the receiver

plane. The carrier frequency here is 7.5 GHz, the phase standard deviation
is 300 radians, the outer scale is 10 km and the inner scale is 10 m. In

the MPS calculation, ten phase-screens are uniformly spaced over 1000 km
to represent the thick scattering medium. A grid of length 100 km is
divided into 16384 points to represent the signal amplitude and phase.
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For this example, 32 discrete frequencies are used over a two-sided band-
width of 80 MHz. This bandwidth is chosen as the null-to-null bandwidth
of a PN spread spectrum code with chip rate of 40x106 chips/sec or to
represent a single, band-limited, triangular, modulated waveform with Tc
equal to 25x10- 9 sec.

Figures 3-23 to 3-30 show the resulting time-domain waveform and

some related measurements from the MPS realization. Figure 3-23 shows 101
samples of the magnitude of the envelope of the received time-domain wave-
form. Each of these 101 samples is taken from equally spaced points along

the entire MPS calculation grid. Thus each curve is separated in distance
by 990 m and very little resolution along the x-axis is shown. More reso-
lution is shown in Figure 3-24 which shows the received time-domain en-
velope for the first 101 MPS grid points. The spacing between each grid
point is 6.1035 m corresponding to 16384 cells equally spaced over a 100
la distance so that the 101 curves shown in the figure correspond to a
total distance of 616 m along the MPS grid.

The effect of the large scale phase irregularities is apparent
in Figure 3-23 and 3-24 in the appearance of many noticeable instances of
signal focusing where the peak amplitude is greater than unity. This
focusing results in a measured value of the S4 scintillation index of
1.15. Values of S4 greater than unity are indicative of focusing ef-
fects. The focal length for the largest (10 km) irregularities is given by

Tr
0

which is 26,180 km. Thus the receiver plane is well inside the focal
distance of the largest irregularities and this example is dominated by
large phase effects. These large phase effects are apparent in Figure
3-23 where the received signal is seen to vary in mean time delay with no
dispersive signal spreading. Dispersive effects are not strong enough
here to cause pulse spreading.

Figures 3-25 and 3-26 further illustrate the point. These
figures show the mean time delay <T> and the time delay jitter as a
function of distance along the MPS grid. As can be seen the mean time
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TIME DELA4Y (CHIPS)

Figure 3-23. Envelope of the received time-domain waveform--rI'S
signal realization.

TIME DELAY (CHIPS)

Figure 3-24. Envelope of the received time-domain waveforui--MPS
signal realization.
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S~Figure 3-25. Mean time delay, <t>, as a function of distance along
i ~the WPS grid.
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Figure 3-26. time delay jitter, at, as a function of distance along

the tiPS grid.
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delay varies slowly with distance and corresponds to the location of the
signal peaks shown in Figure 3-23. Notice the negative mean time delay
(early arrival) at the beginning of the realization and the increasingly
late time of arrival (positive delay) around 40 kn in the realization.
Both of these features. are evident in Figure 3-23.

Figure 3-26 shows the value of T obtained for each individual
MPS cell in the MPS grid as a function of distance along the MPS grid.
For the most part the value of a is constant and equal to the spread of
a triangular signal, 0.316 Tc (see Equation 2-73). Thus the major dis-
persive effect in this MPS calculation is increased time delay that is
accompanied by very little pulse broadening.

However in the range from 40 to 50 km along the MPS grid there
is some very interesting phenomena occurring with evidence of isolated,
high measurements of <T> and a. Figure 3-27 shows the peak amplitude
of the received time-domain envelope as a function of distance along the

!0.0.

Q.
-310.0

40 42 44 46 48 50 P
DISTANCE (KM)

Figure 3-27. Peak signal amplitude as a function of distance along
the MPS grid.
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MPS calculation grid. Notice tiat there is an extended region of about 10

dB fading at around 40 km and a region of very deep fading or defocusing
near 45 km. These deep fading regions are responsible for the large
observed values of <T> and a .

Figures 3-28 and 3-29 show closeups of the plots of <T> and aT

for the region from 40 km to 50 km on the MPS grid. It can be seen that
the large values of <T> and aT near 45 km coincide with the region of the
deepest signal fades shown in Figure 3-27. It is also apparent that the
isolated large <T> and a measurements coincide with small regions where
the signal level is very low. These isolated, large <T> and a measure-

ments are not artifacts or errors in the simulation but rather they are
caused by large phase decorrelation across the signal spectrum which has a
much higher probability of occurrence during deep fading conditions. The
reason for the higher than normal phase decorrelation during deep fades is

that, in general, fades are caused by cancellation of signals coming from
different directions. For very deep fades to occur, such cancellation

must occur over much of the signal bandwidth. Under these circumstances
very little change in frequency (or direction of arrival) is required to
obtain quite a large change in signal phase.

Figure 3-30 shows the received time-domain signal for the range

from 44.5 km to 46.1 km on the MPS grid. Notice the increased mean time

delay of about 0.4 chips at the front of the figure caused by propagation
through a large striation. At the back of the figure, corresponding to

the very deep fade location, phase decorrelation across the signal spec-
trun causes a very extended received time-domain waveform so that some

aliasing is apparent. This type of deep fading behavior is associated
with the occurrence of focusing and defocusing and is not modeled by the

statistical signal generation of Rayleigh fading signals. However this
behavior is handled correctly in the MPS propagation simulation.

Figure 2-37 in Section 2 shows a comparison of the magnitude of

the two-frequency mutual coherence function calculated from the MPS reali-
zation versus the theoretical strong scatter solution given in Section 4.

As seen in the figure, there is some disparity between the two calcula-
tions. The source of the differences lies in the fact that the theoretical

calculation is a strong scatter approximation not exactly valid for the
focusing/defocusing conditions characteristic of this MPS calculation.
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Figure 3-28. Mean time delay, <t>, as a function of distance along
the MPS grid.
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Figure 3-29. Time delay jitter, o•, as a function of distance along
the MPS grid.
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Figure 3-30. Received envelope for MPS calculation from 44.4 to
45.0 Ion along the MPS grid.

In order to generate the Rayleigh portion of this time-domain
signal it is first necessary to determine the values of the phase standard
deviation 0cR and the outer scale LR of the Rayleigh signal compon-
ent. These values may be obtained from Figures 3-2 and 3-3 for the value
of E of 9.SxlO-5 as

AR = 5.0 rad

LR =168 in

Values of the important signal parameters aR and wcohR are found as

WcohR - "•oAoh/A2Zr O2 = 5.97x10 8 rad/sec

R= woaýR/cohR = 15.8
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where the inner scale for the Rayleigh signal component is taken as 1.68
m. Since the inner scale always appears in the logarithm for a K-3 one-
dimensional phase power spectrum, small changes in its value have little
effect.

As is the case in the previous example, it is desired to obtain
a statistical realization of the received complex envelope for comparison
to the MPS results. Thus realizations of the function U(x,zr,v+co)
are required.

Again U(x,zr,v+wo) is generated at 32 discrete frequencies
over the null-to-null 80 MHz bandwidth which corresponds to a chip dura-
tion, Tc, of 2.5x10-8 sec and a PN code rate of 40 Mbps. Thus 32 delay
cells are used with

AT = 1.25 x 10-8 sec

and a total delay interval of

T = 32 AT = 4.0 x 10-7 sec

To generate the impulse response function h(x,zr,T) the dis-
crete values of the delay T range from

-2.5 x 10-8 sec < T < 3.625 x 10-7 sec

which corresponds to

-14.93 wcoh _< 216.5

Figure 4-3 for a equal to 10 shows that all the power in the impulse
response function is contained within the limits

-0.5 < wcoh < 4

so that the range cited above is more than sufficient to obtain all the
power. In fact the samples of S(K,T) are negligible outside the limits
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-0.5 < wcoh? T 4

Thus, in this example, the impulse response function h(XZr,T) has pro-
perties similar to a delta function since it is non-zero at only a few
values of delay. The transform of the impulse response function
U(x,zr,v+wo) is then relatively constant with frequency v and thus
exhibits high correlation properties with respect to v.

As in the previous example, 1024 cells are used to represent the
variation in x with a value of Ax of 2.03 m which is precisely 3 times the
value used in the MPS calculation.

Figure 3-31 shows the amplitude of the received complex envelope
le(x,zr,T)l as a function of x and T. 101 curves are shown each repre-
senting the received signal as a function of T and separated in distance x
by 6.10 m. This figure should be compared to Figure 3-24 which shows

S- - t 2 3 4

TIME DELAY (CHIPS)

Figure 3-31. Received envelope for statistical signal realization.
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similar results for the MPS calculation. It is apparent that this reali-

zation of the Rayleigh component of the received signal has none of the

focusing/defocusing properties or the large slow variations in mean time

delay evident in the MPS calculation. This behavior is, of course, a

consequence of the definition of the Rayleigh signal component which is

that portion of the signal with Rayleigh fading statistics.

Comparison of Figures 3-24 and 3.-31 show that the statistical

calculation for the individual time-domain signals are similar to the MPS

calculation. However the large scale focusing and defocusing effects are

not represented. In addition, the large slow changes in the mean arrival
time caused by large scale phase variations are also not included in the
statistical realization.

Numerical calculation of the two-frequency mutual coherence

function for this statistical signal realization shows constant correla-

tion with frequency for both amplitude and phase of r for all values of

AX. This correlation property has already been discussed and is another

indication of the absence of severe frequency selective scattering and

diffractive effects in this example.

It should be noted that the comparisons shown in this example

emphasize the differences in the signal realizations formed by the MPS
simulation and the statistical signal generation technique. This approach

was taken because it yields an interesting discussion of the different
aspects of electromagnetic wave propagation. For the study of the effects

of strong scintillation on receiver performance, it is always sufficient
to consider only Rayleigh fading, which is the worst case for a one-way
propagation path through strongly turbulent ionized media.
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SECTION 4

TWO-FREQUENCY MUTUAL COHERENCE FUNCTION

In this section an analytic solution is obtained for the two-
position, two-frequency mutual coherence function for spherical wave prop-
agation. It is assumed that strong scattering conditions prevail and that
the quadratic approximation to the phase structure-function is therefore
valid.

This approximation was used by Sreenivasiah, et al., (1976) for
the case of plane wave propagation. Furthermore, Sreenivasiah and

Ishimaru (1979) have recently generalized their previous results to obtain
the two-frequency mutual coherence function for beam wave propagation in

homogeneous turbulence using the quadratic structure-function approxima-
tion. More recently the two-position, two-frequency mutual coherence

function was obtained for spherical wave propagation using the extended
Huygens-Fresnel principle (Fante, 1981). Although the quadratic struc-
ture-function approximation can sometimes lead to difficulties (Wandzura,
1980) it is appropriate for calculation of the two-frequency mutual coher-
ence function but not for calculation of higher moments of the field
(Fante, 1980). Fante discusses the accuracy of the quadratic structure-
function approximation (Fante, 1981) for the case of atmospheric turbu-
lence with a Kolmogorov power spectrum of irregularities. He has found
that the accuracy is a function of the irregularity power spectrum and of
the strength of the turbulence (Private Communication, 1982), with
accuracy increasing for stronger scattering.

The strong scatter solution presented in this section forms the
basis of the statistical signal generation technique described in Section
3 of this report. Here the turbulent ionized medium occupies a thick
finite layer with transmitter and receiver located in free-space on oppo-site sides of the layer.

146



General analytic solutions are derived for two cases. In the
first case the random slab is represented by a one-dimensional power spec-
trum of electron-density fluctuations which corresponds to propagation
through elongated irregularities as would occur for an equatorial satel-
lite link to a ground station. In the second case the random slab is
represented by isotropic ionization irregularities which would occur in
the ionosphere for propagation roughly along the direction of the earth's
magnetic field. Both cases taken together represent the extremes of the
range of results to be expected for propagation through ionospheric fluc-
tuations, or ionization irregularities caused by barium cloud instabili-
ties or by nuclear detonations.

The complex general analytic results obtained for the two cases
of interest are simplified by the use of the thin phase-screen approxima-
tion (zero slab thickness) to obtain tractable expressions for the two-
frequency mutual coherence function as well as its Fourier transform,
referred to as the generalized power spectrum.

The accuracy of the thin phase-screen approximation is a matter
of some importance to this work. This approximation is considered in some
detail in this section where comparisons of the case of a thick layer to
the thin phase-screen case are presented for the S4 scintillation index,
the mean time delay, and the time delay standard deviation.

4.1 FORMULATION

Consider a monochromatic spherical wave E(T,z,w,t) which origi-
nates from a transmitter located at (O,O,-zt) and propagates in free-
space in the positive z direction where it is incident on an ionization
irregularity layer which extends from 0 < z < L. After emerging from the
layer at z = L, the wave then propagates in free-space to a receiver
located at (O,0,zr). This geometry is shown in Figure 3-1 in the
preceding section. As the wave propagates, its phase substantially
behaves as (-i<k>z+iwt) so write

E(W,z,w,t) = U(-,z,w) exp{i(wt-f<k(z')>dz')} (4-1)
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where <k(z)> is the ,ean wave number given by

<k(z)> =J4 (1 - N /nc = k (1 - k2/k2)112  (4-2)
ce c p

where c is the speed of light in a vacuum, Ne is the mean ionization
density, nc is the critical electron density and is related to the clas-
sical electron radius re by nc = 7r/(x 2re), (re = 2.82x10-15 m).

It has been shown that U(-,z,w) satisfies the parabolic wave
eq.uation under the Markov approximation, (Tatarskii, 1971; Yeh and Liu,
1977)

A~N w 2
e p

V2U - 2i<k(z)> L <k2(z Ue> = 0 (4-3)

where ANe is a small variation in the ionization level and wp = kpc
is the circular plasma frequency of the background ionization. The
exponential time dependence has been suppressed and it has been assumed
that wp << w, otherwise signal attenuation would be the dominant effect.

4.1.1 Power Impulse Response Function

4 Now consider the case where the transmitted waveform is no
longer a monochromatic wave, but can be expressed as a waveform modulated
on a carrier

iW t
m(t)e 0

where m(t) is the transmitted modulation waveform or transmitted complex
envelope and wo is the carrier angular frequency. Now if M(w) is the
spectrum of the transmitted complex envelope,

MM = m(t)eut (4-4)
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then the received complex envelope can be expressed as

e(2,zt) 1 M(w)U(-p'z ' +° )ei Wtdw (4-5)

where U(-CZrw) is the solution to the parabolic wave equation at the

receiver plane zr. This result is proven in Section 3 of this report.

The average received power is given by

I(zr,t) <ee*> = . ffM(W)M*(W') <U(-,z 'r++ o)U*(-zr ,W'+Wo)>r~~t 4 2 r-0

x e d(('')td w' (4-6)

The two-frequency mutual coherence function, r, is the quantity in the
angle brackets. Under the assumption (to be justified later) that r is a
function only of the transverse spatial and frequency differences, Equa-
tion 4-6 may be transformed using the sum and difference transformation

Od = W - W

1

W = (W+' (4-7)

s

I(z rt) = . M(J)s+ w d/2)M(,I s.wd/2) r( ApO,Zr,,,d)4T•2 .0

x e wd dwsdwd (4-8)

Since the input signal is m(t), the input power is given by

I(t) = m(t)m*(t) = i FM(w)M*(w')ei(W-W')tdwdw' (4-9)
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Using the same sum and difference transformation, the input power may be

written

ff M(w+wd2)M*(wswd/2) dd s (4-10)

Now if the input power I(t) is a delta'functionf

I ei wdtd 3

i(t) 6(t) L (4-11)
27r -

it is apparent that

i.. f M(ws+wd/2)M*(ws-wd/2)ds 1 (4-12)

So for the special case of an input power delta function, the

output power at the receiver is

1 i0 dt
G(zrt) = _e d d (4-13)f r(cp=o, zr, wd)e

where the new symbol G has been introduced for this important function.

Now to find the output power response to a general input I(t),

first multiply Equation 4-10 by exp(-iujt) and integrate with respect to t

""Otd _ i(W -' )t

CI(t)e dM( M,( s.,d/2)e d dd wsdt
f T fff M(ws+wd/2) (w d/ ed wd t

-00 0

f- . M( ws+w 12)M*,(ws -w2)dcs (4-14)
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The above result comes about because the t integration yields a delta
function, 2 r6(wd-wd'). Now use Equation 4-14, just derived, in
Equation 4-8 to obtain

Zr 1 it 'idt'( iwdt
I(z = L f I(t-)e OZr ,d)e dwddt'

2wr

1 co iwd(t-t')

=f I(t') - f r(A-=o,zr,swd)e dwddt'

fo (t')G(Zr, i-t' )dt' (4-15)
mO

The second expression above is recognized as a convolution. Thus the
output power due to a general input power is given by the convolution of
the input power with the power impulse response function G(zr,t).

The derivation above follows the basic outline given in Ishimaru
(1978) and is included in this report to serve as an aid to the notation
and to emphasize the importance of the power impulse response function
G(zr,t). It will be seen that the moments of G(zr,t) serve as useful
definitions of the mean time delay and time delay jitter which may be used
to characterize the severity of the propagation medium.

4.1.2 Two-Frequency Mutual Coherence Function

Thus the two-frequency mutual coherence function r is important
for the calculation of pulse propagation in a random medium and it serves
as a basis from which to calculate the important power impulse response
function and its momerts. Under the Markov approximation, r satisfies the
following equation (Tatarskii, 1971; Yeh and Liu, 1977).

E + 1  (k2V2m-kIV 2 )r3z 2k lk2

_ 1 [2k 1a1k2 O2A(.1-7.2 ) - (k1
281

2+k2
262

2)A(O)]r = 0 (4-16)
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where

r = <U(X 1jy 1 'WZj)U*(x 2 1Y2 9Z'W 2 )>

and k, and k2 are the wavenumbers at two frequencies w, and W2,

respectively, and V1, is the two-dimensional Laplacian

2V 2  2
- x 2  BY2

with a similar definition for Vt2 .

Following Yeh and Liu (1977) let
= WR2/W12  (4-17)

1-P2/W2

with a similar definition for 02.

The function A(F) is the integral of the autocorrelation func-
tion of electron density fluctuations, B&, in the direction of propa-
gation

A(-61 --P2) = f B(- 1-"P2 ,Z' )dzl (4-18)

where

Pl-P2 = (XI-x 2 ,Y1 -Y 2 )

_ANe
<Ne>

so that

f2 e *(K±,Kz=O)d 2 K (4-19)
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where , is the power spectrum of electron density fluctuations. Equa-

tions 4-18 and 4-19 depend upon the validity of the Markov approximation
where it is assumed that the electron density fluctuations are delta-cor-
related in the direction of propagation (Fante, 1975). That is

a( 1-- 2,z1 -z2 ) - A(-CI-- 2) (z1-zO) (4-20)

Now the sum and difference substitutions

X = (xl+x2)/2

= X1-X2

Y = (Y1+Y2)/2

n= yl-Y2

ks = (k +k2)/2

k =d k-kz

"and the assumption that the frequencies of interest are much greater than
the plasma frequency so that

W p 2/Wl2

B2 =Wp 2/W22

enable Equation 4-16 to be rewritten as

ar i [k V2 +_1 k V2 2k/ .v -]r
3z 2(k•-kj/4) dd 4 d s s s d

8[kk- A( +( L k 4A(O r] = 0 (4-21)
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where

32 32

= 2  + aVd2

a2  a2
3X2 BY2

32  a2
VsVd= +

acaX anaY

r is now written in terms of the above sum and difference arguments as

r(C,n,z,ob) where b = ckd.

The unknown two-frequency mutual coherence function may be

written as r = r 1r0 where r0 is the exact free-space solution in the

parabolic approximation

2 2 2 2r° '~~ 1 2x ikl(xl+Yl) + ik2(x2+Y2)

= 2( (4-22)
•z~zt] 2(z+zt

which under the sum and difference transformation used previously becomes

pro - (4-23)

r' 1)2 -iexpY) -id(X+

2 /

Substituting r = r 1ro into Equation 4-21 and neglecting near zone terms of

the order of ksc 2 /(z+zt) and smaller, one obtains
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ar i kd 1r +rI + in Vlr 1

3z 2 (k2-k2/4) v (r1 + L- - n i

)2kA(,)kA(O r,

81 kjk2  -j (4 j2 po)r

+ terms with r 0 (4-24)
ax aY

Equation 4-24 is valid in the region 0 < z < L with boundary
condition

rI1( ,n,z=O,wd) = 1 (4-25)

Since the boundary condition is independent of X and Y, and the equation
has no terms other than the derivatives with respect to X and Y, it is
apparent that

ar__ = ar__ =
aX Y

Now the substitutions

z= z + z (4-26)

e = C/z' = 4/(z+zt) (4-27)

S= n/z n/(Z+zt) (4-28)

yield the following
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ar1  i k'd 1 r 2  aý2  J
rzo 2 ((k2-k/4) Z2)

ex{-A(V0+)(z-tk)LLThe additional substitution r, -- r2F where

yields the simplified equation for r2

2I6 -212 [A(z'(e+¢)) - A(O) ]r 2 = 0

7z' 2 k2 z12  a,2J 4 k 2

(4-31)

where kd has been neglected with respect to ks. The effect of this
assumption is to restrict the validity of the solution to a small range of
wavelengths centered about ks.

Again following Sreenivasiah (1976) and Yeh and Liu (1977),
expand the function A(z'(e+¢)) in a Taylor series and neglect all but the
first two terms so that

A(z'(e+0)) A0 + z' 2(e+ ) 2A2  (4-32)

Equation 4-32 is the analytic expression of the quadratic phase structure-
function approximation.
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4.1.3 A0 and A2 CALCULATION

4.1.3.1 Isotropic Irregularities

The A0 and A2 coefficients may be calculated for isotropic
tie irregularities by performing the angular integration in Equation 4-19 to

obtain
Go

A(1-2) 4r 2 Jo(K_LP) (K_L,Kz=O) KdK.L (4-33)
0

where

K2 K 2 +K 2?))' ~Kj.2 K2 + Ky2;•

_L x y

SP= t 2-I
P -PP21

The J0 Bessel function may be expanded in a power series and coefficients I
"of equal powers of p equated to obtain

A0 = 4n2 f ${(K.,Kz=O) KLdK. (4-34)
0

•, • A2 = _2¢{K,Kz=O) K_L'dK_± (4-35)
, ~0 •

a) Gaussian PSD

For a Gaussian power spectrum of the form

2
- Le 2 "_
(K) e Lo exp{- K2L0

2/4} (4-36)
<Ne> 2 8ir3/ 2
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II
with corresponding autocorrelation function

02B(r) e exp {-r 2/Lo 2} (4-37)

<N >2
e

it can be shown that

2

A0  L0o012 Ne (4-38)
<N >2

e

02I1/2 O•e
A2  - 1/ (4-39)

LO <Ne> 2

b) Power law PSD

Consider a power law spectrum of the form

¢•(K) -N e(2w)-3/2Xi(xi/L°)(P-1)/3 K (iAK2 + I/L(4(K ep/2 0(4-40)

<Ne> 2K p /2 (•i/L) 2 + ilL 2 )PF2

which has a K-P behavior for I/K ranging from Lo, the outer scale to
1i, the inner scale. The corresponding autocorrelatior function is

) 0e (LlVr2 + )( K(p. 3)/ (o1r2 + j)

i• "<Ne >2(j~i/Lo)(P'3)/2 K p I/2Ji/Lo)

(4-41)
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For the general K-P power law spectrum it can be shown that

Ao (2= 2rtiLo)1/2 Kp.-2 (tiLo) K" (iLo)) Ne- (4-42)
2 2 <N >'

/e

• Ne

S£~~~N(oi) 2

i~< >2 <N>

A 2 2

L- <N >2  -Q)
e

4.1.3.2 Elongated Irregularities

For the case of irregularities infinitely elonqated in the

y-direction, there is no y variation and the two-dimensional equivalent to
Equation 4-19 is

CO• = i (x( l'X2)

A(x1 -X2) 21 i e x (Kx, Kz=O)dKx (4-46)

Here the exponential may be expanded as the Taylor cosine series since 0
is real. The results for the coefficients Ao and A2 are identical to
Equations 4-42 and 4-43 with the exception that the three-dimensional PSD
for electron density fluctuations is replaced by the two-dimensional PSD.
The two-dimensional, PSD is
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N2e (21i)-lX( 1 /Lo)(p-3)/2 K(p A2  + K2 + 1/1_2)S'rN 'iK2 +PKzx +
SNe(Kx,Kz) e P0/ 0)(4-47)

e <Ne> 2K(p. 3 )/ 2 (i/Lo) i2+ K2 + 1/L2  )
r Ne (-3/2x z 0

The two-dimensional autocorrelation function corresponding to this
two-dimensional PSD is given by Equation 4-41. It is now easy to show
that the values of A0 and A2 for infinitely elongated irregularities are
identical to the values for isotropic irregularities.

In the work that follows, the ratio of the constants A0 and A2

appears often. At this point it is noted that for a three-dimensional
K-P power law electron density spectrum

A 0 = - Lo2(2p-8) , p > 4 (4-48)

Remember that the corresponding one-dimensional phase PSD which is often
used in this report has a K-(P-1 ) power law form.

4.1.4 o2 CALCULATION

It is useful to establish the relationship between the coeffi-
cient A0 and the variance of phase fluctuations, a,2. For a layer of
ionization Az thick the incremental phase-shift is given by

k AzI2 ANe(xyz)dzA4(x,y) 2 (4-.49).
2 nc

* ~-AZ/2C

where we have assumed that the critical electron density, nc, is much
greater than the mean electron density and have expanded the formula for
the index-of-refraction (neglecting collisions) in a power series and
retained only the first two terms. Now from the correlation function of
the phase fluctuations
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AZ
k2 <N >2 f <Ale(Xzyz)ANe(X2,Y2,Z')> dzdz'

<A(F(X1 1 ) A¢(X 2 Y2 ) = 4n 2  _AZ <N >2

2
(4-50)

The double integration can be reduced to a single integration by a change
of variables (Papoulis, 1965, p. 325), so that

AZk 2 <N >2 Az
<A(xy)A(x2Y2)> = 4n2c B(-- 2 ,)(- jnl/Az) dn

Pc -Az (4-5.1)

If AZ is greater than the correlation length of electron density fluctua-
tions, then the contribution of the second term is negligible and the
integration limits may be changed to plus and minus infinity. Evaluation
of the resulting expression at p1-p2 = 0 yields

k 2<N >2

o, 0 e LAO kpLAo/k 2  (4-52)
4n02  0 P O

C

where Equation 4-18 is used for A, and L is the total thickness of the
layer of ionization irregularities. For a K-4 three-dimensional ioni-
zation power spectrum, A0 is given by Equation 4-44 and

12I = 2(xre) 2 LLoa (4-53)

where a2  is the variance '-( the electron density fluctuations.ONe

4.1.5 r SOLUTION

Now that general expressions have been derived for the coeffi-
cients A0 and A2, the solution for the two-frequency mutual coherence
function may be continued. Introduce the additional substitutions
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I I

a .= kd/ks 2  (4-54)
, 2

b= k 4/ks2 (4-55)

4

Sv = (abA 2 )1/2 z' aiz' (4-56)

, (aL 1/4 e = a 20 (4-57)

= ( 1' /4 *=a2  (4-58)

With these substitutions Equations 4-31 and 4-32 may be combined to yield

S- - - r22 - (I 2 +e2 )v 2r2 = 0 (4-59)

i2 a 2j8v v2

The boundary condition becomes

r 2(Uc,v=(abA2) 1/2Ztwd) 1

I An analytic solution of the form

r2 = f( v)exp{-g(v)(12+C2) } (4-60)

may be substituted into Equation 4-59 to obtain the following two
equations, the first consisting of terms independent of (U4+C2)

8f + i4fg = 0 (4-61)

8v v 2

and the second consisting of terms with the factor (IU2 +c2 )

g+ + v2 = 0 (4.62)
av V2
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This pair of equations may be solved exactly with the result

f(V) =(4-63)
avtcoshvo1v-v0 )+sinhct(v-v ')

g(v) i - avtsfhtVv)c~c~~t (4-64)
4 (avt cosh a( v-vt )+s iflhca( V.Vt)

where

a =2e1I/

Vt =(abA2)1/2 Zt= alzt

soluion Equations 4-30 and 4-60 may be multiplied to obtain the desired
soluionfor r, in the ionized layer where

0 < z< L
or

zt < z' < L + z

In transcribing Equation 4-30, kd has again been neglected with respect
to k5 to obtain

rl~,,z'wd) p ed s

xf(a~z') exp [-a2 2(e2+2)g(alz)] (4-65)

In accordance with the definitions given by Equations 4-33 and 4-34, A0 is

used to replace A(0) in the expression for r1.
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To complete the solution it is necessary to solve for r, in the
region

L < z< z- -r r

or

L + zZ' _< zr zt

Equation 4-65 serves as the boundary condition at z' = L+zt. Since the

region z' > L+zt corresponds to free-space with no ionization, Equation
4-29 is appropriate where the last term, which is dependent on the func-
tion A, may be neglected since A is zero in the absence of ionization
irregularities. Also, in keeping with previous assumptions, the kd2

term is ignored with respect to the ks 2 term in Equation 4-29.

The Fourier transform pair

r(e,(,zd) ei (K (4-K66res,'od' f e rj'KO'K • z' • )dK edK¢ (4-66)

CO 00 i'(Koe+K@'
z' (/2)2ffe"

r1(K0 ,K,, j) rj(O,ý,z',ud)dedý (4-67)
O- 00

may be substituted into the suitably mudified Equation 4-29 to obtain the

algebraic equation

I i kd 2
+ (K 2+K2)r, _ 0 (4-68)

az' 2 kS2 z 6

Equation 4-66 may be solved and the boundary condition 4-65
applied at z' = L+zt with the result

rl(Ko,K ,zt+zrlwd) rl(Ke,K,,L+ztwd)

x exp [-iy(K2 +K 2)] (4-69)
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where

1 kd (zrL)
y- (4-70)2 ks2 (L+zt)(zt+Zr

The final result may then be obtained by taking the Fourier transform of

Equation 4-65 to obtain rj(Ke,K,tz'+ztud) and then taking the inverse
Fourier transform of Equation 4-69. The appropriate Fourier transform,

pairs are gi%:en by Equations 4-66 and 4-67. The required integrals are

easily found in Gradshteyn and Ryzhik (1965) and the result may be written

as

rI(4,n,zr,wd) = r(C,n,Z'=zt+zr, wd)

x exp
1 + i4ya 2

2g[al(L+zt)]

4x l+i4ya 2
2g[a 1(L+zt)]}I- (4-71)

where the e and * coordinates have been transformed into the • and n co-

ordinates according to the transformation of Equations 4-27 and 4-28. TheI subscript I on r has been introduced to denote that the solution is appli-

cable to the case of isotropic ionization irregularities. The case of
elongated irregularities follows. The first exponential term in Equation
4-71 comes from the first exponential term in Equation 4-65 where the
relationship between 0, and A0 given by Equation 4-52 has been utilized
to simplify the resulting exponential.

4.1.5.1 Elongated Irregularities

For transionospheric propagation the case of elongated irregu-
larities may be more appropriate than that of isotropic ionization irregu-

larities. To model elongated irregularities, assume that the striations
are long tubes, infinite in the y-direction shown in Figure 3-1.
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For this case the splution proceeds in the same manner as described for
the case of isotropic irregularities.

The development differs since there is no y dependence in the
case of elongated irregularities. Thus the factor of 4 in Equation 4-61
becomes a factor of 2 for elongated irregularities. The resulting solu-
tion for the function f is then the square root of the result obtained for
the isotropic irregularity case. Equation 4-62 for g remains unchanged.
In the succeeding development, the only difference occurs because one-
dimensional Fourier transforms are involved rather than two-dimensional
transforms as are used for the isotropic irregularity case. The final
result for r, for the case of elongated irregularities is

rE(,zr, wd) = exp {-Zw?/2 w}lf [aI(L+zt) ]}/

L ' . 2a 2
2g[ai(L+zt) I/(Zr+zt) 2

x exp -
1 + i4ya 2

2g[a1 (L+zt))

X{l+i4ya 2
2g[al(L+zt) ]}1-/2 (4-72)

where f and g are defined by Equations 4-63 and 4-64. The subscript E on
r refers to the elongated irregularities.

4.1.5.2 Thin Phase-Screen Approximation

Further simplification is obtained if the thick scattering layer
is replaced by an equivalent thin phase-screen with infinitesimal thick-
ness and the same overall phase variance, ,2. As will be seen the
accuracy of the thin phase-screen approximation is a function of the
propagation geometry, the wavelength and the electron density PSD.

The thin phase-screen approximation has been used by many
authors and is treated in detail by Mercier (1962) and Salpeter (1967).
Wernik, et al., (1973) and Bramley (1977) have examined the accuracy of
the thin phase-screen approximation for the calculation of the
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scintillation index. Rino (1980) and Rino et al. (1981) have utilized
this approximation to obtain numerical propagation results and to

successfully model observed data from the DNA Wideband satellite
experiment.

Here the accuracy of the thin phase-screen approximation is

examined in detail as it affects the calculation of the scintillation
index and the mean time delay and time delay jitter. It will be seen that

the maximum error in the use of the thin phase-screen approximation is
small; therefore this useful approximation is invoked here to simplify the

mathematics and to aid in understanding the results.

Now taking the limit as the layer thickness approaches zero and
utilizing the substitutions,

-Ao(zt+z) 2

X2 = (4-73)0 A2 z202

t3

Trw 12z -orwAo(z +Zr)
coh o t - 00zt r (4-74)

Xzr(Z +zr )A2ZtZroa

simplified expressions are found for the two-position, two-frequency

mutual coherence function in the thin phase-screen approximation

rI(w,n,Zr,wd) = exp {Io-wa/2w(}

/'( T1n2)/ g2\

x exp (d 01 (1+iwdlwcoh)' (4-75)

iiwdI wcoh /)
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rE(ý,Zr,(id) --exp { tw 3}

~exp (1~o)(+w/ch12(4-76)

Thus the thin phase-screen approximation allows the complicated
expressions 4-71 and 4-72 to be written in terms of the simplified param-
eters to and wcoh. In the following it will be seen that to, the signal
decorrelation distance, and wcoh, the coherence bandwidthl, are two very
important parameters which describe the characteristics of the signal
fluctuations.

Figure 4-1 shows the thin phase-screen model of the general

propagation geometry shown in Figure 3-1. The distance from the trans-
mitter to the phase-screen is zt and the additional distance to the
receiver is zr. The total free-space propagation distance is
zt+zr. It is apparent from Equation 4-74 that the coherence bandwidth
is a reciprocal quantity. That is, an interchange of transmitter and
receiver does not affect its value. However the decorrelation distance to

is not reciprocal. to is a measure of the average distance between fades
at the receiver and depends on the path geometry.

A more useful measure is the signal decorrelation time, To,

which is a measure of the inverse fading rate or inverse fading band-
width. To is a time-domain measure of fading whereas go is a spatial

measurement. The signal decorrelation time is given by the equation

•To - (4-77)Veff

where Veff is the relative velocity of the line-of-sight at the receiver

location. Although this velocity is a function of transmitter and re-
ceiver motion as well as irregularity motion, it is sufficient to consider

the case where the transmitter and receiver are stationary and the phase-
screen is in motion. Assume that the scattering layer consists of
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Zr

1• Receiver Plane
Veff

Figure 4-1. Thin phase-screen propagation geometry.

striations moving in unison at a velocity V perpendicular to the line-of-
sight. Then the projection of these striations at the receiver location
due to a signal originating at zt has velocity

V(z r+zt)
Veff (4-78)zt

Combining Equations 4-73, 4-77 and 4-78, the received signal decorrelation
time is obtained as

-A2 0
T (4-79)0 A2 V2a(1

It is apparent that To is only a function of the layer velocity and is
reciprocal as it should be.
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For the often used K-2 in situ power spectrum of one-dimensional
electron density fluctuations, Ao/A 2 may be obtained from Equations 4-44
and 4-45 and the signal decorrelation time is given by

2 L
To 0 (4-80)

jtn(Lo/Zi)or V

4.2 GENERALIZED POWER SPECTRUM

At this point it is convenient to introduce the generalized
power spectrum which is defined as the Fourier transform of the two-
frequency mutual coherence function. The generalized power spectrum

serves two useful purposes. First, it is the basic function which is used
in statistical signal generation as discussed in Section 3. Second, it
acts as an intermediate function from which to easily determine the power
impulse response function. This latter aspect is considered in detail in
the following subsection.

For the cases of isotropic and elongated irregularities, the

generalized power spectra are defined as

SI(K9KnTzr,9) = (2n)- 3 fff rI(,nZrd)

x exp -i( if, +rn )+iw dTlddndwd (4-81)

S ~~00 0 '

E(K,, = 112)- rE(,Zrd) exp [-i4K +iudTl]dowd (4-82)

The inverse transforms are given by

r (Cnizr,wd) =fffS1 (K ,Kz T,) exp [+i(ýK +rnK)-iWdT]dK dKnd'r
-0-00 0O

(4-83)
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r(•,Zd) =4SE(K ,Z.-) exp [+id(-iwdr] dK dT (4-84)E rd ff E 9rd

In the case of elongated irregularities, the one-dimensional
generalized power spectrum is given by Equation 4-82. For the case of
isotropic irregularities, the one-dimensional generalized power spectrum
is given as the integral over the two-dimensional spectrum (Rufenach,
1975).

SI(K zr T) f SI(K ,K z T)dK (4-85)

Equation 4-81 is easily integrated with respect to K to obtain

SI(K ,Zr,•) (21)"2 ff ri,,rO,ZrT) exp [-irA4K 1wd¶ wd (4-86)

where r, is evaluated at zero n because the integration yields a delta
function. The inverse transform of Equation 4-86 is

rl(,n=O,rz 9T) )0 expiK -iwdT]dK d( (4-87)

The integrals of Equations 4-81 and 4-82 can be computed by
recognizing that the interior integrals in these two equations with
respect to 4 and n are related to quantities computed above. That is,
from Equation 4-81

(2-) 2ff ri(,n,zr,wd) exp[-i(kK +nKn)]d~dn

= ri(K ,Kn zr'wd)

S(zt+Zr) 2 rl(Ko,K ,z : zroid) (4-88)
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where rl is given by Equation 4-69. The (zt+zr) 2 term results from the

transformation

6 = 0/(zt+zr) (4-89)

0 = nl(zt+zr) (-0

relating angles and distance perpendicular to the direction of

propagation.

In the case of infinitely elongated irregularities it can simi-
larly be shown that the interior integral of Equation 4-82 may be written
as

(1/12t) f rE(4,Zrwd) ex P[-i K ]dc

E(K;r (4-91)

= (zt+Zr)rl(KZ=Zrwd)

where r, in Equation 4-91 is the one-dimensional equivalent of the two-
dimensional result given by Equation 4-69.

"Equations 4-88 and 4-91 may be substituted into Equations 4-81

and 4-82 to obtain simplified expressions for the generalized power
spectra

4Go

SI(K Kn zrT) - (1/27f) f rl(K ,K, zr, wd) exp(iWdT)dwd (4-92)

SE(K ,zrT) = (1/2n) rE(K ,Z, wd) exp(iwdr)dwd (4-93)
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The Fourier transforms of Equations 4-92 and 4-93 cannot be per-
formed analytically except for the case of a thin phase-screen. In this
special case it is possible to show directly from Equation 4-69 and its
equivalent for elongated irregularities that

2

r I(K ,KIZd) 2 exp{.-cawo/2w21 } exp {- I (KZK 2 )32(1+iW 1lW)}4f 4 n 0 o coh

(thin phase-screen) (4-94)

rE(K z wd) 0 "exp {-CF2i2/2',21 exp {- - K2 o2 (1+i
E rd 2/ exp0 4 ý o wd/wcoh)lI(thin phase-screen) (4-95)

In the thin phase-screen approximation the preceding four equations can be
combined to yield for the generalized power spectra

SI(K'KnZr'9 ) =I 5/2/2 exp -(K 2+K2) o2/4

r 2 5/ 2f3/ 2 0 T

1 c12[wcohT . (K2+K2) j2/4 ]2
2

(thin phase-screen) (4-96)

SE(KZrT) = wcoh 0 exp -K 2 92/4-1 2 o - Ko2/4]2}
2F2 4O r! 01[wco T 0K
2 3/2o 2

(thin phase-screen) (4-97)

where to and wcoh are given by Equations 4-73 and 4-74. The parameter a

is given by the equation

a WOI h (4-98)

and will be shown to be an important measure of the ratio of the propaga-
tion distance to the focal distance of the largest irregularities.
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4,

The one-dimensional generalized power spectrum for isotropicirregularities is given by Equation 4-85; for the thin phase-screen

approximation of Equation 4-96 the integral is obtained from the tables as

SI(K ,ZrIT) = 3coh4 2 exp{- K2 o2 /4 - a2 [K21 2/4 - wcoh]2}

x exp(B 2/4c 2 )K1/ 4(0 2/4a 2) (4-99)

where

= a2[K2 12/4 - (4-100)
0 wcohTl+l

Equations 4-97 and 4-99 are the one-dimensional forms of the
generalized power spectra which are used in the statistical generation of

realizations of the signal received after propagation through a strongly
turbulent medium. Appendix A shows plots of these functions for a range
of values of the parameter a. It is important to note that the one-dimen-
sional generalized power spectrum is required for the case of isotropic
(rregularities since statistical realizations of the received signal are

desired that are a function of one spatial dimension only. Generation of
these realizations is discussed in detail in Section 3 of this report.

4.3 POWER IMPULSE RESPONSE FUNCTION SOLUTION

In this subsection the impulse response function due to a trans-
mitted power delta function is determined in the thin phase-screen approx- A
imation. Equation 4-13 gives the power impulse response function as

00 iWdT

G(zr = (1/2,) f r(&-=OZr,wd)e d wd (4-13)

Now it is easy to prove from Equation 4-86 that for zero &-5 ki

GI(zrIT) f SI(K ,z 9T)dK (4-101)
I r r
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Equation 4-101 is true because the K, integration on the right-hand side
of Equation 4-86 yields the delta function 2w6(g) which is then integrated
with respect to g to yield the right hand side of Equation 4-13. An ex-
pression identical to Equation 4-101 is found for the case of elongated
irregularities. Thus Equation 4-101 may be applied to the generalized
power spectra given by Equations 4-97 and 4-99 to analytically determine
the power impulse response functions:

Gl(z r,) : exp {'(cwcohT) 2/2} exp {(I-c 2wcoh

2

x 4c{D 1-t 2 cohT)IV2al (4-102)

2/21h1_a2 1 /2GE(rT) = wo.h exp {-Pawcohr) 22}l•moT /

E~coiiwcouiv2-,r

x exp {(l-a 2 wcohT) 2/4 a2} K1/4 {(l-a 2 rcoh ) 2/4a 2} (4-103)

where oc(x) is the complementary error function

O~c(x) 2_f exp (-y2)dy
Vit x

and K1/ 4 (x) is the modified Bessel function (Abramowitz and Stegun, 1965).

4.1.1 Limiting Values

It is apparent that the power impulse response function G
depends upon the parameter a defined by Equation 4-98. Using Equation
4-74 for wcoh it can readily be shown that

-A2Nztz'r
a Z= - (4-104)

TA (z +z )
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Thus a is a reciprocal quantity and does not depend on the relative place-
ment of the transmitter and receiver.

For a Gaussian irregularity spectrum the values of Ao and A2 are

obtained from Equations 4-38 and 4-39 and

•0 zt zr
a = r (Gaussian PSD) (4-105)

1TL2 (zt+z

For a K-4 in situ three-dimensional electron density spectrum or a K-3

one-dimensional phase PSD, Equations 4-44 and 4-45 give Ao and A2 with the
result

0 1n(L 0 t i)X0ztZr (K"4 Ne PSD) (4-106)
2itL2(Z+)e0 o2Zt+zr)

It is apparent that a is a measure of the severity of the scattering since
it is directly proportional to the phase standard deviation. Recalling
from Section 2.3 that the focal distance of a Gaussian lens is given as

F = nL 2/olo

where Lo is the scale size and 0o is the peak phase, it is seen that a is
proportional to Z/F where Z is the effective propagation distance. Here
the peak phase for a single lens, 0o, and the phase standard deviation,
O, are taken as roughly equivalent. Thus large values of a correspond
to situations where Z >> F and phase fluctuations have been fully con-
verted to amplitude fluctuatic-. through the process of diffraction.
Small values of a correspond to situations where phase fluctuations have
not yet been converted to amplitude fluctuations, as would occur close to

a random phase-screen. Thus the value of a is a measure of the relative
importance of scatter.ng and dispersion with large values indicating

strong scattering effects and small values indicating strong dispersive
effects.
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In order to calculate the power impulse response function in the
large a limit it is convenient to write Equation 4-101 as

GI (zrT) =ff' I (K ,Kzr T)dK dK (4-107)

where SI is given in the thin phase-screen approximation by Equation
4-96. For large values of a it can be shown (Stakgold, 1967, p.21)

lim .. exp {-a 2 x2} = 6(x)

Thus for large a the generalized power spectrum of Equation 4-96 is given
by

lim SI(K ,KnZT) 25coh 0 exp {- (K2+K2 )k2/4}

X ~ 0 T - (K1K2 X24 (4-108)

In this case the integration specified by Equation 4-107 can easily be

performed with the result

wcoh exp -cohT) , T > 0

lim GI T) = (4-109)

0 T<O

For the case of infinitely elongated irregularities it is recognized that
the generalized power spectrum can be written as

lim S (K Zr ch exp - K2 2

a+o E r 23/2 T[1/2 0 /41

x L= ('oh K�9q/4) (4-110)
V2
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With this simplification in mind the power impulse response
function is easily found from Equation 4-101

(wcoh/'iT)/ exp (-OwcohT) , _> 0

lim GE(ZrT) = (4-111)

10 T < 0

Equations 4-109 and 4-111 give the power impulse response func-
tion for the case of large a where scattering and diffraction effects dom-
inate dispersive or phase effects.

In the limit of small a, corresponding to the case that disper-
sion dominates over diffraction, the generalized power spectra of
Equations 4-97 and 4-99 take on the identical form

lim SI(K ,Zr ,r) = lim S(K ,rT)
CAO I.ra+ E0

coh o exp {-K29/4 - a2WcohT2/ 21 (4-112)
23/ 2 0

Equation 4-112 follows directly from Equation 4-97 for SE. For the case
of isotropic irregularities, Equation 4-112 follows from Equation 4-99
where use is made of the fact that

lim (exp (02/4a2) K1/4 ( a2/4a 2 )1} = j211
cx4O

Equations 4-101 and 4-112 may then be combined to obtain the power impulse
response function in the limit that dispersion is dominant. That is.

lim GI(ZrT) a---h exp {-(awcdhT)2/2 1

= lim GE(Zr, T) (4-113)
a+O
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It is noted that Equation 4-13 gives a Fourier transformation
relationship between r and G. The inverse transform may be evaluated at
zero wd with the result

to

r(Or, =d0 ) f G( z r, T)d T (4-114)
r-'d

Since r(O,zr,O) is unity, the above equation provides a check on the
derivation. It is easily shown that all the expressions for the impulse
response given here obey the normalization condition of Equation 4-114.

Figures 4-2 and 4-3 show the power impulse response function for
values of a of 1, 3, 10, and 100 for the case of isotropic irregularities
and for a values of 1, 3, and 10 for the case of elongated irregularities.
These curves are plotted directly from Equations 4-102 and 4-,03; conse-
quently the figures strictly apply to cases where the thin phase-screen

*• approximation is valid. However, as will be seen in the following, this
restriction is a minor one.
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Figure 4-2. Power impulse response function for isotropic irregu-
larities in the thin phase-screen approximation.
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Figure 4-3. Power impulse response function for elongated irregu-
Slarities-in the thin phase-screen approximation.
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Figure 4-4. Power impulse response function for isotropic and elongated
irregularities in the thin phase-screen approximation.

180



F!

In order to simplify the presentation of these results, the
power impulse response function is normalized by dividing by the coherence
bandwidth and choosing wcohT as the abscissa. In both figures it is
apparent that the power impulse response function changes from a roughly
Gaussian shape at unity a to an exponential shape for larger a. In the
case of isotropic irregularities, the power impulse response function is
very close to its asymptotic exponential form for a value of a of 100.

Figure 4-4 shows the power impulse response function for the
case of a < 0.01. Note that a different convention is used for plotting
purposes than is used in the previous two figures. For this range of a
dispersive effects are dominant and the isotropic and elongated irregular-
ity cases are identical. For a • 0.01 it is evident that the small a,
asymptotic form of the power impulse response function, given by Equation
4-113, is reached for a 0.01. Equation 4-98, which defines a, may be
rewritten as

"ecoh =o/aý

For most cases of interest involving lossless propagation through ioniza-

tion, the carrier frequency is large with respect to the phase standard
deviation and the right-hand side of the above expression is large. In
that case the limit of small a corresponds to the limit )f large coherence
bandwidth, wcoh' Thus

limG (z rT) lim G(zT) (4-115)
a+O r coh

The expression on the -ight-hand side of Equation 4-115 is recognized from
Equation 4-113 as a Dirac delta function (Stakgold, 1967, p. 21), which

may be written as

lim GI (z rT) = 6(T) (4-116)
Wcoh+'

Thus in the small a limit, dispersion or phase effects dominate, and the

power impulse response function is a delta function.
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4.4 MEAN TIME DELAY AND TIME DELAY JITTER

Two important measures of the effect of scintillation on wide
bandwidth signals are the mean time delay and the time delay jitter.

The mean time delay and time delay jitter of the received signal may be
obtained (Yeh and Liu, 1977) or these measurements may be applied directly
to the power impulse response function to obtain results which are indeed
measurements of the propagation channel. With the latter approach in mind
define

0O

< = f TG(ZrT)dT (4-117)

-00

02 = f T2G(Z ,¶)d¶ - <.> 2  (4-118)
Tr

The mean time delay and the time delay jitter are functions of the re-
ceiver location but this functional dependence is omitted here for economy
of notation. The mean time delay and the time delay jitter are simply
related to the two-frequency mutual coherence function since from Equation
4-13

G(rr i(•dT (-3

(Zr, 1_. f r(O=O'rFO,zrwd)e dwd (4-13)

Both integrals 4-117 and 4-118 may be performed directly since the T inte-
grations yield Dirac delta functions or a derivative of a Dirac delta
function. The results are

ar7
< = (4-119)

W =0

a2 2

2 2 +dO •d m= (4-120)•+

a4 0
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Equations 4-119 and 4-120 are general results and apply to both elongated
and isotropic irregularities and are not limited to the case of a thin
phase-screen.

4.4.1 Mean Time Delay <T>

Equation 4-119 may be easily applied to the two-frequency mutual
coherence functions given by Equations 4-71 and 4-72 and results obtained
that are valid for the thick layer geometry shown in Figure 3-1. After
much algebra the results are found to be

a02 1A 6ZtZr+L(9zt Zr-3Z)+L2(3Zr-5Zt)-2L3

<TE= (4-122)

An intuitive explanation for the factor of one-half in the relationship
between the mean time delay for isotropic and elongated irregularities is
that the elongated irregularities cause scattering in only one plane
whereas isotropic irregularities cause scattering in both planes
perpendicular to the propagation path.

It is noted that the expression given in Equation 4-121 is
reciprocal. Interchange of transmitter and receiver is accomplished by
the substitutions

z' = Zr -L (4-123)

zi = zt+L (4-124)

where the prime quantities are the values after the interchange. These
equations apply to the thick scattering layer geometry shown in Figure
3-1.

For a transmitted plane wave z increases to infinity and
the mean time delay simplifies to

183

- '- -~-,~-.-~-~ r



lim <T> (2zr-L) (4-125)zkrcA r

This result can be shown to be identical to Equation 54 of Yeh and Liu,
1977 neglecting contributions from the transmitted signal in the referenc-

ed work. Now for a transmitted plane wave and the thin phase-screen
approximation, L in Equation 4-125 is neglected and

lim < ____ (4-126)
zt+0 k2cAo Zreff

where the receiver location in the thin phase-screen approximation is
written as Zreff to indicate that the receiver location may depend on
the thickness of the scattering layer to be represented by an equivalent
thin screen. One logical location for a thin phase-screen chosen to

represent a thick layer is the center of the original layer. In this case

Zrf z -r .- _ L (4-127)

For this choice, and the case of an incident plane wave, the phase-screen
approximation, Equation 4-126, gives a result identical to the exact

calculation, Equation 4-125.

In the more general spherical wave case the thin phase-screen
limit is obtained by setting the layer thickness L equal to zero in
Equation 4-121 and taking zt and zr as Zteff and Zreff to indicate that

these values depend on the original layer thickness. The result may be
written as

2 IA21 Zteff Zreff<TI> =(4-128)

k2cA0  (z +z0o 0 teff Zreff)
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which is reciprocal as it should be. Now to locate a thin phase-screen at
the center of a layer of thickness L let

Zteff =zt + L/2 (4-129)

Zreff zr -L/2 (4-130)

It is quickly shown that the resulting expression for the mean time delay

o0IA21 ( 4zrzt+2 L(zrzt)2L

<TI> = 2k2 CA02 Zr +Z / (4-131)

is not identical to the original thick layer result, Equation 4-121, in

the general spherical wave case.

In summary, the thin phase-screen result for the mean time-delay
is exact for plane wave propagation, but not for the more general case of
spherical wave propagation. The full expression given by Equation 4-121
is valid for a thick layer and spherical wave propagation.

Another choice of a thin phase-screen location is discussed by
Fante (1981) where it is shown that the location may be chosen as a
function of the PSD to give the exact result for However this
choice of location does not give the correct result for the two-position
mutual coherence function.

4.4.2 <p> and a - Thin Phase-Screen Approximation

In the thin phase-screen approximation the simplified
expressions for rI and rE given by Equations 4-75 and 4-76 may be
used in Equations 4-119 and 4-120 to compute the mean time delay and
time delay jitter. The results are the following expressions

<TI> = I/wcoh (4-132)

<T 1/2c (4-133)
E> = coh

185
'4,



o2
T (I + (4-134)

coh

E( + (4-135)

where the parameters wcoh and a are defined in Equations 4-74 and 4-98
respectively. In the following these simple expressions for the thin
phase-screen approximation are compared to exact results for a thick
scattering layer. It will be shown that the thin phase-screen calcula-
tions of the mean time delay and the time delay jitter are valid under a
wide range of conditions and are therefore very useful.

4.5 VALIDITY OF THE THIN PHASE-SCREEN APPROXIMATION

In the following sections of this report the validity of the
thin phase-screen approximation is investigated for calculations of the
scintillation index in the weak-scatter approximation (Salpeter, 1967) and
for the mean time delay and time delay jitter in the strong scatter
limit. The scintillation index calculation is included here because this
result is important for the statistical signal generation technique
described in Section 3 of this report. The results inclu(, I here are
somewhat similar to those developed by Wernick, et al. (1973) with the
difference that the results shown here model a thick layer with a -en-
trally located phase-screen as opposed to a phase-screen located at the
layer bottom. It can easily be demonstrated that the centrally located
phase-screen gives better agreement with exact weak-scattering calcula-
tions.

The geometry under consideration is shown in Figure 3-1 with the
single exception that the transmitted wave is assumed plane so that the
transmitter is located at infinity. This transmitter placement is solely
for analytical convenience in this subsection.
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4.5.1 S2-Rytov Approximation

From Tatarskii (1967, Equation 7.21) the perturbation of the

logarithm of the electric field in the Rytov approximation is given as

k2 f U(r') r) eikIF-' (
*(r) 0 6 • Ap(• ) e dV' (4-136)

The unperturbed incident field u (Y) is here taken as a plane wave travel-
0

ing in the positive z direction

uo()= exp{-ikz} (4-137)

An(f) is the variation in the index-of-refraction and the integration is

over the entire extent of the fluctuations.

As usual the factor IFr-I in the exponential is expanded in the
K Fresnel approximation as

SIF-w'-ll (z-z') + (x-X') 2+(Y') 2  (4-138)
2(z-z')

and as z-z' in the denominator. Expression 4-138 is valid as long as the
wavelength, x, is less than the inner scale size, x, so that the

scattering of even the smallest eddies is in the forward direction (Fante,
1975).

Substituting the incident field into the integral expression
given by Equation 4-136, one obtains

ip(OOz) = .2 f An(F') exp{-ik(x' 2+Y' 2)/2(z-z dV' (4-139)

2ir I ~~(z-zl)d' (419

The mean-square log-amplitude fluctuation is given as

02 = <(Rep) 2> (4-140)
1x
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and depends upon the correlation function of the index-of-refraction
fluctuations which can be written as

<,n (r')An(rf)> S (K)eiK'(r''r') dK (4-141)

Now assume that the irregularities are uncorrelated in the direction of
propagation (this simplifying assumption is equivalent to the Markov
approximation; Fante, 1975) so that

<An(-7')An(F")> =6(z'-z") A(7-7p'--"z'

i276(z'-z") f S(KS(_,Kz=O;z')e dK± (4-142)

Here p and KL are the vector and associated wavenumber in the plane normal
to the direction of propagation. It is evident that the spectra S (K) and
Sn(KL,Kz=O;z') must be both real and even for Equations 4-141 and-j-' z4-142 to
be valid.

Thus from Equation 4-139, the log-amplitude fluctuation x or the
real part of i ;may be written as

k2  ,f',,(F) cos[k(x' +y)/ 2 (zr-z')]
x(O,Ozr) =- dV' (4-143)(z Zr-Z')

Utilizing Equation 4-142 for the correlation function of the index-of-
refraction fluctuations, one obtains the mean-square log-amplitude fluctu-
ation

t f dV f dV" I$)-" - fd.=V I fSV1 1) Q K n(K.L,Kz-O~z' )e
X 21 _0. (Zr-Z')(zr-Z") -Z

x cos[k(x' 2-y' 2 )/2(zr-Z')] cos[k(x" 2+y" 2 )/2(zr.Z'1)] (4-144)
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The exponential factor may be expanded as cos[Kx(x -x')+K (y-y")] and all
integrations may be easily done with the aid of a table of integrals to
obtain

L C O
a 2 k2A z dK .~(K..2,2 2'

x fdz_ f d S ,O;z ) sin 2[(Zr-Z')(Kx+Ky)/2k] (4-145)
0 -0

Now a general mathematical description for three-dimensional
index-of-refraction fluctuations subject to a Gaussian power spectrum is
given by

3 2CnK, ' Loan e 2pC- 2 2 2 2

-- (K;z e = 3/ o exp+- K y K2+Kz)Lo/4} (4-146)

where e represents an elongation factor. The limit as e approaches
infinity corresponds to the case of elongated irregularities. A value of
unity for e corresponds to isotropic fluctuations perpendicular to the
direction of propagation. Note that the normalization here is such that

f S (K;z')dK = o2 (4-147)
- n n

For the case of isotropic irregularities the integral can be
performed by transforming to polar coordinates. For elongated irregulari-
ties the integration is more complex and the limit as e tends to infinity
must be taken after performing the K integration. Then perform the
Z' integration and finally the Kx integration to obtain

SI= 2 2 1 +4L [tan. 4(z -tan.'(4•z)]I (4-148)
41 4)LZL

s2 2a 2 i + 1- (1+16(•z •L•2)1/4 sin tan-" 4(z-

4~E 2i +2E. )) (-tan)
zL

- (1+16 )1I/ sin(½ tan-I 4z (4-149)
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71,

where the weak scattering approximation

S= 4a 2  (4-150)X

has been utilized to obtain the scintillation index and the substitution

a2 = O k2LL o2 (4-151)
0 on

which is valid for a Gaussian PSD has been utilized. The subscripts I and
E refer to the case of isotropic and elongated irregularities,
respectively. For ease of notation the additional substitutions

Ez = /ZrL2 (4-152)

E= 4L/242L (4-153)

have been incorporated into Equations 4-148 and 4-149. Equations 4-148
and 4-149 are the expressions for the scintillation index for a thick
layer in the Rytov approximation.

4.5.2 S2 -Thin Phase-Screen Approximation
4i

The thin phase-screen results for the scintillation index may be
obtained directly from Salpeter (1967) as

S2 =4 fS,(KxK) sin2 [(K2+K2)Ze/2k] dK dK (4-154)
41 xy x ye x y

S2 4 fS (K sin 2 [K 2Ze/2k] dKx (4-155)

"where ze is the distance from the phase-screen to the observer and the
phase power spectral density is given by

L2  22
S (Kx,Ky) = 5 exp{- (K2+K2 )L2/4} (4-156)

S y 4x y0
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2,
S (K) 0- ex-K2 4 (4-157)

Equation 4-157 Is the one-dimensional-equivalent to the power spectral
density given by Equation 4-156. The final results for the scintillation
index in the weak-scatter, thin phase-screen approximation are then

2a [1 - (1+16q" 1] (4-158)

S2 22 [1 (1+1 )' cos(1 tan-' 4 (4-159)

where

te AZe/2wL2 (4-160)

In the following subsection, the results for the scintillation
index in the thick layer Rytov approximation are compared to the above
results in the thin phase-screen approximation. For the purposes of the
comparison it is assumed that the phase-screen is located at the center of
the thick layer, that is

Ze zr - L (4-161)

e r 2

4.5.3 Comparison of Results

Figures 4-5 and 4-6 show the thick layer results for the
normalized scintillation index S4/ /2 a as a functiort of the normalized
free-space propagation distance x(z mL)/24L2 for values of the normalizedr
layer thickness 9L ranging from 0.0001 to 1A. Figure 4-5 is a direct plot
of the results of Equation 4-148 and is valid for isotropic irregulari-
ties. Figure 4-6 is a plot of the results of Equation 4-149 and is valid
for infinitely elongated irregularities.

As shown in these two figures the value of S /14 a peaks at
unity for x(zr-L)/2irL2 large.For values of normalized layer thickness, zr 0.

smaller than the normalized free-space propagation distance t by a

191



__ ~ ~ 2 *-* - -10- -

10.1

0.0

ISOTROPIC IRREGULARITIES
GAUSSIAN PS0

10 op Io

Figure 4-5. Rytov approximation to scintillation index for isotropic
o' irregularities with a Gaussian PSO.
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Figure 4-6. Rytov approximation to scintillation index for elongated
irregularities with a Gaussian PSD.
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factor of ten or more, the actual layer thickness is unimportant and the
result is independent of layer thickness for very small layer thickness.
One must be careful not to use the results shown in these two figures as
evidence that the thin phase-screen approximation is useful only for
situations where the normalized free-space propagation distance is ten or
more times the normalized layer thickness.

Figures 4-7 and 4-8 show the differences between the scintilla-
tion index calculation in the Rytov approximation and in the thin phase-
screen approximation where the phase-screen is located at the center of
the original thick layer. Tie abscissa is the normalized free-space
propagation distance, & Z-L, and the ordinate is the error quantity

S2(Rytov) - S2(phase-screen) 1/2

SI(Rytov)

plotted in percent. Values of the normalized layer thickness, &L, shown
here range from 0.0001 to 10. In all cases the error is small even when
the normalized frae-space propagation distance and the normalized layer
thickness are identical. For a fixed normalized layer thickness the dif-
ference between the two approximations increases with decreasing normal-
ized free-space propagation distance until a fixed maximum difference is
reached. This fixed maximum difference corresponas to the thick layer
geometry where the receiver is located at the edge of the original thick
layer, that is at zr = L. Note that the value of the maximum difference
depends on the normalized thickness as is shown further in the next two
figures.

Figures 4-9 and 4-10 show the values of the percent difference
between the Rytov thick layer calculation of S4 and the thin phase-
screen calculation of S4 for a thick layer geometry in which the
receiver is located at the edge of the scattering layer, that is
&z = &L in Equations 4-148 and 4-149. In the thin phase-screen
approximation the phase-screen is located at the center of the layer so
that &e = &L/2 in Equations 4-158 and 4-159. In both the case of
isotropic irregularities (Figure 4-9), and the case of infinitely
elongated irregularities (Figure 4-10), the maximum difference is fifty
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percent. This difference reflects the worst case accuracy of the thin
phase-screen approximation in the weak scattering regime. Note that the
difference has a minimum in both figures corresponding to points where the
thin phase-screen approximation gives a result identical to the Rytov
approximation.

In Section 3 of this report the thin phase-screen approximation
is used to determine the onset of severe scintillation defined as the
point at which the scintillation index has a value of 0.5. For this
rurpose, a maximum difference of fifty percent, when compared to the more
complicated Rytov approximation, is considered acceptable.

These brief results illustrate the following points regarding
the use of the thin phase-screen approximation for weak scattering.
First, the accuracy of the thin phase-screen approximation for a thick
layer is dependent on the relative lengths of the free-space propagation
path and of the propagation path through the turbulent ionized layer.
Second, for a free-space propagation distance ten or more times larger
than the layer thickness, the thin phase-screen approximation is an
accurate model of a thick layer with five percent or less error for S4 .
Third, for equal propagation distances in free-space and through the thick

layer, the error in the thin phase-screen approximation is small. Fourth,
for a thin phase-screen centrally located to replace a thick layer, the
accuracy of the thin phase-screen approximation is a function of the nor-
malized layer thickness The maximum error in S4 is fifty percent.

Therefore the thin phase-screen approximation is a useful,
accurate tool to use to determine the onset of severe Rayleigh scintilla-
tion for the purposes of statistical signal generation.

4.5.4 <.> and o - Thick Layer Versus Thin Screen

In this section the simplified results for <T>, the mean time
delay, and c, the time delay jitter, both in the thin phase-screen
approximation, are compared to exact results in the strong scatter
approximation obtained from Equations 4-117 and 4-118 by integrating the
exact power impulse response function. For the exact calculation the
power impulse response function is obtained by numerically taking the
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Fourier transform of the two-frequency mutual coherence function as
specified by Equation 4-13. The required two-frequency mutual coherence
function is evaluated numerically in the general case of a thick
scattering layer from Equations 4-71 and 4-72 for isotropic and elongated
irregularities, respectively. Then <T> and aT are obtained by
numerically integrating according to Equations 4-117 and 4-118.

In all cases in this subsection the geometry under consideration
is shown in Figure 3-1. For convenience the transmitter distance zt is
taken as infinity so that the incident wave is plane. The layer thickness
is L and the free-space propagation distance outside the layer is Zr-L.
A K 4 three-dimensional irregularity spectrum is used with a ratio of
outer scale to inner scale of 100.

In the thin phase-screen approximation the important parameters

%, wcoh and a have simple expressions for the geometry of interest,

02: 2(xre) 2 LL o2e (4-53)

2rw L2
Wcoh 0 0n(Lol)xz o2 (4-162)

9.ln( L0/.iZ )xzra
a - (4-163)

2,L2

0

Equations 4-162 and 4-163 are obtained directly from Equations 4-74 and

4-106. For steeper spectra the constants in these expressions take on
different values but the basic algebraic dependence on the important quan-
tities xZr/Lo 2 and % remains unchanged. The expression for 0coh
may be substituted into Equations 4-132 and 4-134 to obtain for the thin
phase-screen case and isotropic irregularities
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Cy IwI(
<22 >1/ tn(Lol 0 1A )r Zreff (4-165)

_2= 24-164

* 0
%I'o(1 +1 \1"/2 , ul(Lo/2,t) •Zrff

2 2 (4-165)

For elongated irregularities, Equations 4-133, 4-134, and 4-162 yield

<•E>o = 1Ln(Lo/ki) Azreff
2 (4-166)

2 24Lo2

OTEWo 1 +1 )-1/2 xn(Lo/li)X Zreff
2 (2 a 24 2 (4-167)

To model a layer of thickness L with transmitter at infinity and receiver
located a distance zr from the entrance to the layer, a thin phase-
screen located at the layer center has

Zreff = zr - L/2 (4-168)

in Equations 4-164 to 4-167.

Therefore, based on the thin phase-screen results of Equations

4-164 to 4-167, it is convenient to plot the expressions on the left-hand
side of the four equations.

Figure 4-11 shows the normalized mean time delay for isotropic
irregul arities

<-r >W / 2

as a function of the normalized free-space propagation distance cz-rL
for values of the normalized layer thickness &L ranging from 10-6 to
10. As defined previously
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Results applicable to the case of elongated irregularities may be obtained
by dividing the ordinate by two. It is apparent from the figures that for
any given free-space propagation distance, the value of the normalized
mean time delay converges to the thin phase-screen result as 9L de-
creases.

For a constant value of the normalized layer thickness, gL, the
normalized mean time delay becomes a c.onstant function of 9z'4L for
values of the normalized free-space propagation distance less than about
one-tenth of the normalized layer thickness. This situation corresponds
to a thick scattering layer with very small free-space propagation dis-
tance so that changes in the free-space propagation distance are unimpor-
tant and do not affect the geometry.

Figure 4-12 shows the normalized time delay jitter

2T~or (1 L) )1/2

as a function of the normalized free-space propagation distance, gz-gL
Values of the normalized layer thickness 9L ranging from 10-6 to 10 are
shown. The general appearance of this figure is similar to that of the
previous figure. The limiting behavior described above for decreasing
layer thickness at a constant free-space propagation distance and for de-
creasing free-space propagation distance at a constant layer thickness
also occurs in Figure 4-12. That is, for a given normalized free-space
propagation distance, the normalized time delay jitter converges to the
thin phase-screen result as the normalized layer thickness decreases. For
a constant value of normalized layer thickness, the normalized time delay
jitter reaches a constant value for normalized free-space propagation dis-
tance values less than about one-tenth of the normalized layer thickness.
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Figure 4-12 is also valid for the case of infinitely elongated
irregularities where the ordinate in this case is

aEO02(l 1/2

At this point consider the calculation of the difference between
the exact thick layer results and the thin phase-screen results for values
of the mean time delay and time delay jitter. It was shown previously in
Section 4.4.1 that both calculations yield the same value of the mean time
delay. It is also apparent that this comparison is also available for the
time delay jitter for a few values of normalized layer thickness from the
curves of Figure 4-12. To make such a comparison it is important to modi-
fy the effective free-space propagation distance shown on the abscissa so
that the thin phase-screen is located at the center of the original thick
scattering layer.

Figure 4-13 shows values of the difference between the exact
strong scatter calculation and the thin phase-screen approximation

SOTJI8OIC IRREGULARITIES

20

15 -

to 001

b 0,I,•Ih

010-4 1073 o7'2 1071 lop 10 1 102 103

k(Z,.-L)/2nTLo
Figure 4-13. Relative time delay jitter accuracy of the thin phase-screen

approximation, isotropic irregularities, • = 100.
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U.i(exact) - OTI(phase-screen)

,~(exact)

plotted in percent as a function of normalized layer thickness and nor-
malized free-space propagation distance. Figure 4-13 applies to the case
of isotropic irregularities and is restricted to a value of a of 100.
Values of the normalized layer thickness kL range from 10-1 to 10. It
can be seen that for values of the normalized layer thickness less than or
equal to the normalized free-space propagation distance, the difference is
at most about 10 percent. The maximum difference is independent of layer
thickness and is 22.5 percent. This maximum difference corresponds to the
case of a receiver located at the exit of the thick layer with zero free-
space propagation distance. As in the preceding calculation of the thin
phase-screen approximation to the scintillation index, this geometry is
the most difficult to model with a centrally located phase-screen.

Figure 4-14 shows another comparison of the accuracy of the time
delay jitter calculation in the thin phase-screen approximation. The cal-
culations presented in this figure differ from the previous calculations
only in that the value of the parameter a is unity for Figure 4-14. It is
apparent that the thin phase-screen approximation is more accurate for
this decreased value of the parameter a with a maximum difference of about
9.5 percent for unity a.

Figure 4-15 shows the difference between the exact strong scat-

ter results and the thin phase-screen results for the time delay jitter
for elongated irregularities and unity a. The general behavior noted in
the two previous figures is again observed here. The maximum time delay
jitter difference is now decreased to about 6 percent for this elongated
irregularity case.

The previous three figures show that the maximum difference in
the time delay jitter calculation, caused by modeling a thick scattering
layer as a thin phase-screen located at the center of the layer, is a
function of the parameter a.
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Figure 4-15. Relative time delay jitter accuracy of the thin phase-screen
approximation, elongated irregularities, • ; 1.
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Figures 4-16 and 4-17 show the maximum error

aT (thick layer) - o (phase-screen)

y (thick layer)

in percent for the isotropic and elongated irregularity cases, respective-
ly. These curves were obtained by taking a value of the normalized layer
thickness, 9L, of 10 and a very small value of the free-space propaga-
tion distance, ýz'k, of 10-6. This case yields the desired marximum
difference. It can be seen in both figures that the error decreases to
zero for values of a less than unity and reaches the maximum value of 22.5
percent for values of a of about 10 and greater. It was noted in Section
4.3.1 that • is proportional to the quantity zr/F where zr is the
propagation distance and F is the focal distance. Hence for a small, the
receiver is "close to" the phase-screen and dispersive effects dominate
diffractive effects. In this case the time delay fluctuations are caused
by large-scale phase fluctuations and are well modeled by a thin phase-
screen. For a large, diffraction is more important than dispersion and a
single phase-screen model of a thick layer is relatively less accurate.

It should be emphasized that the maximum error in aT caused by
modeling a thick layer by a thin phase-screen is 22.5 percent. This error
appears to be modest relative to uncertainties in the knowledge of the
propagation environment in the case of strong scattering.

As a final comparison of the accuracy of the thin phase-screen
approximation to calculate the time domain properties of a wide bandwidth
waveform subject to strong scattering, consider the effects of the approx-
imation on the power impulse' response function Gi(zr,t). Figures 4-18
to 4-20 show the power impulse response function for isotropic irregular-
ities for a thick layer and its thin phase-screen equivalent. The
abscissa and ordinate are normalized by multiplying and dividing by
Wcoh' In all three figures the results correspond to a value of a of
3 where scattering effects slightly dominate dispersive effects. In all
three figures the normalized free-space propagation distance, ýz'EL,
is unity; the normalized layer thickness, ýL, takes on values of 0.1,
1.0, and 10 in the three figures. The thin phase-screen equivalents thus
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have zero layer thickness and values of the effective normalized propaga-
tion distance between phase-screen and receiver of 1.005, 1.5, and 6
respectively. These values are computed directly from Equation 4-168.

In Figure 4-18 the layer thickness is smali relative to the
free-space propagation distance and the impulse response function is exact
for the thin phase-screen approximation to this layer.

In Figure 4-19 the layer thickness and the free-space propaga-
tion distance are identical. The power impulse response function for the
thick layer is quite similar to that of the thin phase-screen approxima-
tion in this case with no difference in the mean time delay and a 9.6
percent difference in the time delay jitter.

In Figure 4-20 the layer thickness is ten times the free-space
propagation distance with a resulting 19 percent error in the result for
oI obtained in the thin phase-screen approximation.

0.7 .... .... , ii•, , r,, .... 11 11 .... • ... WI. . T.. 'Ie :
ISOIROPIC IRREGIILARITIES

0.6 %(Zr-L)/ML a 1.0

XL/21tL2 -0.01

0.5 3

THIN PHASE-SCREEN
"". 0.4 IDENTICAL TO THICK LAYER

0.2

0.1 ,

0.0 , , , , I I , * * , I , , , , , , , ! . . . . . . .. I ... .
-2 -1 0 1 2 3 4 5 6 7 a

Figure 4-18. Comparison of power impulse response function, thin
phase-screen versus thick layer.
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Figure 4-19. Comparison of power impulse response function, thin
phase-screen versus thick layer.
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Figure 4-20. Comparison of power impulse response function, thin
phase-screen versus thick layer.
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Results of this subsection show that the thin phase-screen
approximation gives an adequate approximation to the exact, strong scatter
result for time delay jitter. It has also been shown that the thin-phase
screen approximation provides an accurate approximation to the power
impulse response function and thus may be used as the basis for the sta-
tistical generation of signals as discussed in Section 3 of this report.

2
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APPENDIX A

A.1 EVALUATION OF THE GENERALIZED POWER SPECTRUM S(KT)

A.1.1 Numerical Method

In this appendix the generalized power spectrum, as calculated
in Section 4 in the thin phase-screen approximation, is evaluated for a
number of interesting conditions. The evaluation of S(K,T) is somewhat
tedious as is seen here but is, of course, quite necessary for the calcu-
lation of statistical realizations of the impulse response function. In
the thin phase-screen approximation the generalized power spectrum is

given by Equations 4-97 and 4-99 repeated here for convenience

(KIT) ht exp ~ K2 ~ ~ 2[1 K2k _1co324 0 2 '4 0 ]2

(A-1)

SI(K,T) -o/ exp - -1 K2 2 1- 2  1 K2 ,2-_ coh T
4ff3/ 2 4 02 [ 0o o

x exp (0 2/40 2 )KI/ 4( a 2/4 O2 ) (A-2)

where

0 (21K1_ + 1 (A-3)[ 0 K2 *cohT

Equation A-i gives the generalized power spectrum for elongated
irregularities and is appropriate for the two-dimensional geometry solved
by the MPS propagation simulation. This equation is easy to evaluate
numerically.
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Equation A-2 gives the generalized power spectrum for the case
of isotropic irregularities and is somewhat more difficult to evaluate.
It is convenient to consider four cases and use different, efficient eval-
uation algorithms for each case.

Case 1: 0 < 02 /4a 2 < 3.5

For 02/4a2 between zero and 3.5, SI(K,T) is easily evaluated
since in this range the K1/4 Bessel function may be directly cal-
culated using the expressions

K (z V( v(z)-j V(z) (-4
= - " (A-4)

2 sin vi

I) (z) = (,/2)V 0 (z2/4)k (A-5)

k=0 k! r(v+k+1)

which are taken directly from Abramowitz and Stegun, 1964. For z < 3.5
sufficient accuracy is obtained using at most twelve terms in the
convergent series given by A-4. The r function required in Equation A-5
is available on most computer systems and is also given in Abramowitz and
Stegun.

Case 2: a2/4a 2 > 3.5

For 02/4a2 > 3.5 it is necessary to use the asymptotic

expansion for the factor

exp (s2/4(a2) K1/4 (0 2/4ca 2 )

which has the form

e ZK V(z) =(yr/2z)1/ 2 11 + P-__1 + (P-1) (P-9)

( 8z 2!(8z) 2

+ (p-l)(t- 9 )(p-25) + ,. (A-6)
3!(8z) 3
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where P = 4v 2 . Equation A-6 is taken ,directly from 9.7.2 in Abramowitz

and Stegun.

Cases 3 and 4: a less than zero

For B negative it is necessary to carefully evaluate the term

{1/2 K 1/4(02/4a2)

This is easily done with the aid of Equation 9.6.31 from Abramowitz and
Stegun. The result is found as

aI/ K1/4 ( 02/4(c2)=

Ijfl/2{KI/ 4(o2/4a2) + Ii2 I 1/ 4( 2 /4ca 2 )} , < 0 (A-7)

Also one needs the identity

01i [1 K2zo2_w¶ +2 _4 2to°2"coh TI+ 4a2

1 2 -4 (A-8)
Q 2 4 (2

Substituting Equation A-7 into the expression for SI(K,T) and replacing
the appropriate factors in the exponent by use of A-8, one obtains for
< 0

SI(KT) Wcohk°lo'l /2 1 K22
473/2 exp 4- 0

X exp 2 L4 K20wcoh1 exp ( 2/4c 2)KI/ 4 (82/4( 2

+ 21/21T exp - exp (-82/4 .2)I1/ 4( 2/4 a2) (A-9)
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Case 3: < 0, 0 < 2/4a 2 < 3.5

For 0 negative and 02/4a 2 < 3.5 accurate results can be obtained
using the convergent series for K1/4 and 11/4 given by Equations A-4 and

A-5 to evaluate the expression for the generalized power spectrum given by
A-9.

Case 4: 0 < 0, a2/4• > 3.5

For 0 negative and 02/4a 2 greater than 3.5 use of the convergent

series expression becomes inefficient and causes inaccurate numerical
results. Instead use the asymptotic expansion given by Equation A-6 for
the term

exp (0 2/4 a2) K1/ 4 ( 2/4 a2 )

to evaluate the term with the K Bessel function. For the remaining term,

exp (- B2/4a 2 ) I1/ 4 (02/4c 2 )

use the asymptotic expression 9.7.1 in Abramowitz and Stegun.

e- ZI (z) U 1 -,_1 + (V-1) (1-9)
V V2n-z 8z 2!1(8z) 2

e.(z) 1)(1-9) + (p-) .(A-1)

- 3!(8z) (

where w=4v 2 .

The numerical techniques described in this section enable

"accurate and efficient evalt.,tion of the generalized power spectra. In
the following subsection results for these functions are shown for a
number of different -values of the parameter a.
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A.1.2 ExUmples of S(K,T)

In this section plots of the generalized power spectra SE(K,T)
and SI(K,T) are shown as a function of the parameter a. This parameter
is described in Section 4 where it is seen that a much less than unity
corresponds to the case where large scale phase effects and dispersion are
more important than angular scattering or diffraction. a greater than
unity corresponds to the case where diffraction provides the dominate
scattering mechanism.

Figures A-i to A-20 show plots of the function SE(K,T) and
SI(K,T) for values of the parameter a of 10.0, 5.0, 1.0, 0.1, 0.01. In
all cases the generalized power spectra are plotted as a function of the
normalized variables x0K and wcohT. This is a convenient normalization
as can be readily seen from Equations A-i and A-2. Two types of figures
are shown here. In one case contours of the generalized power spectra are
shown as functions of the two normalized variables xoK and wcohT. A
second plot of S(K,T) is provided which gives a three-dimensional view of
this function to provide better understanding of the functional depend-
ences.

Figures A-1 to A-4 for a value of a of 10 shows the behavior of
the generalized power spectra for large a. The delta function behavior
for the case of elongated irregularities as given by Equation 4-110 is
shown in Figures A-1 and A-3. Recalling from Fourier analysis that the
variable K is related to the sine of the scattering angle, e in the para-
bolic approximation, for small e

K = 2wsine 2we (A-11)

Since the generalized power spectrum takes on the form

( O2coh
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when diffractive or angular scattering effects are dominant, there is a
one-to-one correspondence between scattering angle and time delay. That
is,

K=+2 2,re
K + + VW (A-12)

- coh' +

Of course, the resulting time domain power impulse response
function is the integral of the generalized power spectrum over all K or
equivalently, over all scattering angles (e.g., Equation 4-107).

The effect of the difference between isotropic irregularities
and infinitely elongated irregularities is also seen from a comparison of

Figures A-1 and A-3 versus A-2 and A-4. Notice that for the case of iso-
tropic irregularities, the characteristic horseshoe shape given by the
equation

W coht = 2 (A-13)
T 4

has a tendency to be filled in. For elongated irregularities, less energy

is present inside the horseshoe.

The reason for this difference is that angular scattering can
occur in only one plane for the case of infinitely elongated irregular-
ities. For large a and elongated irregularities a single time delay can
result from scattering at only two angles as specified by Equation A-12.

For isotropic irregularities, angular scattering occurs in two planes and
a large number of different scattering angles can yield the same time
delay even for large a. It is the angular scattering from the additional
plane which causes the horseshoe shaped figure to be filled in for the

case of isotropic irregularities.

Figures A-5 through A-16 show the development of the generalized

power spectra as the parameter a decreases from 5.0 to 0.1.
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Figures A-17 to A-20 for the case of a of 0.01 show the gener-
alized power spectra for the case where angular scattering is unimportant

and large phase effects and dispersion are the dominant factor. As-dis-
cussed earlier, the case of small a corresponds to the basic geometry
where the focal length of the irregularities is much larger than the prop-
agation distance to the receiver. Equivalently the receiver is located
very close to the scattering medium. In this case, the phase irregulari-
ties comprising the scattering layer appear as very large, frequency
selective lenses which cause little angular scattering but which may cause
different frequency components of a wide bandwidth waveform to propagate

at different velocities. These large phase excursions in the medium may
also cause large scale changes in the mean time delay. In either case the

generalized power spectrum for isotropic or elongated irregularities has
the Gaussian form given by Equation 4-112 and shown in Figures A-17 to
A-20.
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